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ABSTRACT

In last few decades mesoscopic physics has emerged as an prominent area of re-

search and development. It deals with the interface between the microscopic world

of atoms and molecules and the macroscopic bulk samples that are in the thermo-

dynamic limit. Hence it deals with many basic issues like how quantum phenomena

evolves into thermodynamic properties. It also promises to give rise to a new gen-

eration of electronic devices that work on quantum principles. Although devices

working on quantum principles can revolutionize the electronic industry, they have

not been achieved yet as it is difficult to control their stability. We show that one

can use evanescent modes to build stable quantum switches. The physical proper-

ties that make this possible is explained in detail. Demonstrations are given using

a multichannel Aharonov-Bohm interferometer. We propose a new S matrix for

multichannel junctions to solve the scattering problem. Quantum tunneling of an

electron through a classically forbidden regime has no classical analogue and several

aspects of it is still not understood. In another work we analyze a situation where

electronic current under the barrier can be measured without disturbing the states

under the barrier. For this we consider a multichannel Aharonov-Bohm ring and

develop the correct formalism to calculate the currents inside the ring when the

states are evanescent. We also show unlike other proposed quantum devices that

such currents are not very sensitive to changes in material parameters and environ-

ment and thus the system can be used to build stable devices that work on magnetic

properties. We start from microscopic approach to many body physics and show the

analytical steps and approximations required to arrive at the concept of quantum

capacitance. These approximations are valid only in the semi-classical limit and the

quantum capacitance in that case is determined by Lindhard function. The effective

capacitance is the geometrical capacitance and the quantum capacitance in series,

and this too is established starting from a microscopic theory.

The organization of my thesis is as follows. In Chapter 1, we give a brief descrip-

tion of the background of the subject, the brief details of characteristic length scales

and the fabrication of mesoscopic samples. There are few prominent mesoscopic

effects which are never observed in the bulk. In this chapter we briefly present few

of them.

In Chapter 2, we give a brief review of transport formalisms used in mesoscopic

systems. First, we give a brief idea of transport regime. In 1957 R. Landauer gave a

physical argument for calculating the conductance of a mesoscopic scatterer where

leads are accounted for. In quantum waveguide theory section we show explicitly

how the leads can act as an electron wave guide. We describe in detail the general
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Landauer conductance formula where the conductance is effectively determined by

the transmission probabilities of propagating modes. M. Büttiker extended Lan-

dauer approach to describe multi-terminal measurements in presence of magnetic

field. We describe briefly the Büttiker’s formula in next section.

Before going into the core analysis and results of this thesis, it is necessary

to mention about the most important basic theory we are using for description of

Chapter 5 and Chapter 6, i.e., the Aharonov - Bohm effect. This is the effect in

which wavefunctions acquire some additional phase when travelling through space

with no electromagnetic fields, but only potentials. In this Chapter 3, we describe

in detail the theoretical aspects of Aharonov - Bohm effect in open system and in

isolated (or closed) system as well. We have taken a one dimensional ring connected

to two electron reservoirs via perfect leads in both sides as an example of open

system and give a detail description of Aharonov - Bohm effect in Section 3.1 of

this chapter. Again we have taken a one dimensional ring threaded by a magnetic

field and the field is confined to the central region of the ring, as an example of an

isolated system. Electrons in this ring can support a current around the ring which

depends on the magnetic field and cannot decay dissipatively, which is known as

persistent current. We give a brief idea of this phenomenon in Section 3.2 of this

Chapter 3.

In Chapter 4, we describe quantum capacitance. Starting from microscopic the-

ory to many body physics we show the analytical steps required to arrive at the

concept of quantum capacitance. We use some approximations which are valid in

the semi-classical limit and derive the quantum capacitance which is determined

by Lindhard function. We show in this chapter that our analysis is independent of

model in any dimension.

The Chapter 5 describes the possibility of building stable switch based on quan-

tum interference effect. In this chapter we consider a multi-channel Aharonov-Bohm

interferometer connected to two electron reservoirs of different chemical potentials

to understand the quantum interference effect. We propose a S matrix for multi-

channel junctions to solve the scattering problem and give a detailed theoretical

analysis including channel mixing and evanescent modes. We show in this chapter

that our work contradicts Landauer’s claim that devices based on quantum inter-

ference effect cannot be achieved.

In Chapter 6 we describe a situation where electronic current under the barrier

can be measured without disturbing the states under the barrier. We develop the

correct formalism to calculate the currents inside the ring when the states are evanes-

cent. We discuss various transport phenomena like conductance current, circulating

current, persistent current etc as well as thermodynamic property like magnetiza-
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tion. We propose that stable devices can be build based on magnetic response using

evanescent modes.

In the final chapter (Chapter 7), we draw our conclusions. Thereafter we present

our future plans.
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Chapter 1

INTRODUCTION

“Around here, however, we don’t

look backwards for very long.

We keep moving forward,

opening new doors

and doing new things,

because we’re curious,

and curiosity keeps

leading us down new paths.”

– Walt Disney.

R. P. Feynman discussed, predicted and challenged the future generation scien-

tists: “Why cannot we write the entire 24 volumes of the Encyclopaedia Britannica

on the head of a pin?” or “The entire contents of the library of congress in the volume

of a sugar cube?” in his seminal lecture entitled by “There is plenty of room at the

bottom” on 29th December, 1959 at the annual meeting of the American Physical

Society at the California Institute of Technology [1]. In 1947, with the invention of

world’s first transistor [2], a trend towards miniaturization started. In the last five

decades there has been tremendous progress made in the development of technologies

for reaching the physical limits of miniaturization, in order to satisfy increasing in-

dustrial demands. Requirements for lower power consumption, occupying less space,

containing more information and faster processing speeds of electronic devices has

imposed the necessity for smaller dimension and has led to a rapid development of

manufacturing technologies. Since the 1960’s, the number of transistors per unit

area has been doubling every 18 months. This fantastic progression of circuit fab-

rication is known as Moore’s law [3, 4], after Intel co-founder Gordon E. Moore.

If the size of integrated circuit chips stay approximately the same, then the linear

dimension of the transistors will half every four years. Current transistor fabrica-

3
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tion already runs at 22 nm, and Intel claim that they will have 5 nm technology in

commercial devices by 2020. Today, this critical dimension is reached in commercial

microprocessors fabrication using optical lithographic techniques. This limit can be

reduced to a few nanometers by use of electron beam lithography (EBL), electro-

chemical methods, etching techniques, etc. These techniques have opened another

field of solid state science, namely mesoscopic physics.

Meso means middle or intermediate in Greek. In 1976 N. G. van Kampen first

coined the term mesoscopic systems in the context of statistical physics [5], and

similar usages have come to appear more often in diverse fields since early 1990s

with the advent of micro-fabrication processing techniques, referring to small sam-

ples whose dimension lies in between microscopic and macroscopic counterparts.

They are much larger than microscopic objects like atoms, but not large enough to

be described by text book condensed matter physics or statistical mechanics. For

example a conductor usually shows ohmic behavior if its dimensions are much larger

than each of the three characteristic length scales:

(i) the de Broglie wave length, which is related to the kinetic energy of the electrons,

(ii) the mean free path which is the distance that an electron travels before its initial

momentum gets destroyed and

(iii) the phase-relaxation length, which is the distance that an electron travels before

its initial phase is destroyed.

These length scales vary widely from one material to another and are strongly af-

fected by temperature, magnetic field etc. If sample (conductor) dimension becomes

comparable to these length scales then Ohmic behavior breaks down. Fig. 1.1

Figure 1.1: Zone of macroscopic, mesoscopic and microscopic systems.
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presents three regions of systems along the length scale bar with familiar objects

corresponding the size of physical length. Macroscopic ones are often what our bare

eyes can see, typically bigger than millimeters, whereas microscopic systems are

too tiny to understand. Mesoscopic world closes the gap between the two regions,

spanning from millimeters to nanometers (a billionth of a millimeter).

1.1 Some Basic Concepts

1.1.1 Characteristic Lengths

In this section different characteristic lengths like de Broglie wave length, mean

free path, phase relaxation length, magnetic length and thermal length have been

described at which mesoscopic effects appear. These length scales have the following

physical meaning:

(i) de Broglie wave length, λF : This length is defined as

λF = 2π~/p(k) = 2π/k

where p(k) is the typical electron momentum (wave vector). For Fermi gas the

characteristic momentum is just the Fermi momentum. For the case of a single

filled band in two dimensional electron gas (2-DEG),

λF = 2π/kF =
√

2π/ns

where ns is the electron density. For the Boltzmann gas, p ≈
√
2mkT , and

λF = 2π~/
√
2mkT .

For an electron density of 5× 1011/cm2, the Fermi wavelength is about 35 nm.

At low temperatures the current is carried mainly by electrons having an energy

close to the Fermi energy so that the Fermi wavelength is the relevant length.

Other electrons with less kinetic energy have longer wavelengths but they do

not contribute to the conductance [6]. When the sample dimension becomes

comparable to λF then quantum effects become predominant and Schrödinger

equation becomes the guiding equation of motion for particle dynamics.

(ii) Mean free path, Lm: An electron in a perfect crystal moves as if it were

in vacuum but with a different mass. Any deviation from perfect crystallinity

such as impurities, lattice vibrations or presence of other electrons lead to

‘collisions’ that scatter the electron from one state to another thereby changing
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its momentum. The momentum relaxation time τm is related to the collision

time τc by a relation of the form

1

τm
→ 1

τc
αm

where the factor αm (lying between 0 and 1) denotes the effectiveness of an

individual collision in destroying momentum, e.g., if the collisions are such that

the electrons are scattered only by a small angle then very little momentum

is lost in an individual collision. The factor αm is then very small so that the

momentum relaxation time is much longer than the collision time.

The mean free path, Lm, is the distance that an electron travels before its

initial momentum is destroyed; i.e.,

Lm = νfτm

where τm is the momentum relaxation time and νf is the Fermi velocity. The

Fermi velocity is given by

νf =
~kf
m

=
~

m

√
2πns → 3× 107cm/s

if ns = 5 × 1011/cm2. Assuming a momentum relaxation time of 100 ps we

obtain a mean free path of Lm = 30µm. When the sample dimension becomes

comparable to Lm then one has to abandon the usual notions of canonical and

grand canonical ensembles and carefully develop a new approach for mesoscopic

system.

(iii) Phase relaxation length, Lφ: The phase relaxation length is the average

distance that an electron travels before it experiences inelastic scattering which

destroys its initial coherent state. Typical scattering events, such as electron-

phonon or electron-electron collisions, change the energy of the electron and

randomize its quantum-mechanical phase. Impurity scattering may also con-

tribute to phase relaxation if the impurity has an internal degree of freedom so

that it can change its state. For example, magnetic impurities have an internal

spin that fluctuates with time. In high-mobility degenerate semiconductors,

phase relaxation often occurs on a time-scale τφ which is of the same order

or shorter than the momentum relaxation time τm. We will discuss phase-

relaxation time (τφ) as follows

1

τφ
→ 1

τc
αφ
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where the factor αφ denotes the effectiveness of an individual collision in de-

stroying phase. We can obtain phase-relaxation length by multiplying the

Fermi velocity with the phase relaxation time:

Lφ = νfτφ.

In low-mobility semiconductors the momentum-relaxation time τm can be con-

siderably shorter than the phase relaxation time τφ and diffusive motion may

occur over a phase coherent region; then L2
φ = Dτφ with a diffusion constant

D = ν2F τm/2. When the sample dimension becomes comparable to Lφ then

interference effect has to be properly understood and accounted for.

(iv) Magnetic length: In the presence of a magnetic field (inductance B) the elec-

tron energy is quantized in Landau levels EN = (N+ 1
2
)~ωc where ωc = eB/m∗

is the cyclotron frequency. The magnetic length LB = (~/eB)1/2 characterizes

the extension of the cyclotron orbit. The importance of the magnetic length

lies in the fact that it can be tuned over a large range by changing the mag-

netic field. Thus, a magnetic field provides additional means of reducing the

effective dimensionality of the system [7].

(v) Thermal length: The thermal length LT = ~νF/(kBT )is connected with

the average excess excess energy of thermal electrons kBT . The phase of an

electron which travels at the Fermi velocity is undetermined within LT , due to

thermal fluctuations of the electron energy [7].

1.1.2 Fabrication of Mesoscopic Samples

Semi-conducting sample fabrication

Advances in electron beam lithography within the last few years have made it possi-

ble to fabricate nano sized or mesoscopic artificial structures with good control over

design parameters and probe the quantum transport properties [6]. These include

very narrow quasi one-dimensional quantum wires, zero-dimensional electron quan-

tum systems or quantum dots, rings etc., constructed at semiconductor interface.

Typical sizes of these systems vary between 1 to 10 µm. Recent work on meso-

scopic conductors has largely been based on GaAs-AlGaAs heterojunctions where a

thin two-dimensional conducting layer is formed at the interface between GaAs and

AlGaAs. The generic semiconductor structures used to obtain a two dimensional

electron gas (2-DEG) which is shown in Fig. 1.2.

The conduction and valence band line-up in the z-direction when we first bring

the layers in contact (Fig. 1.2 (a)). The Fermi energy Ef in the wide gap AlGaAs

layer is higher than that in the narrow gap GaAs layer (Fig. 1.2 (b)). Consequently
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electrons spill over from the n-AlGaAs leaving behind positively charged donors.

This space charge gives rise to an electrostatic potential that causes the band to

bend as shown in Fig. 1.2 (c). At equilibrium the Fermi energy is constant ev-

Figure 1.2: Line-up of conduction and valence band at a junction between an n-type
AlGaAs and intrinsic GaAs, (a), (b) before and (c) after charge transfer has taken
place. This is a cross-sectional view. Figure taken from [6].

erywhere. The electron density is sharply peaked near the GaAs-AlGaAs interface

(shaded region in Fig. 1.2 (c)) forming a thin conducting layer which is usually re-

ferred to as the two dimensional electron gas (2-DEG). The carrier concentration in

a 2-DEG typically ranges from 2×1011/cm2 to 2×1012/cm2 and can be depleted by

applying a negative voltage to a metallic gate deposited on the surface. The practi-

cal importance of this structure lies in its use as a field effect transistor (FET) [8, 9],

etc. There are various types of FETs (which are distinguished by the method of

insulation between channel and gate) under a variety of names such as MOdulation

Doped Field Effect Transistor (MODFET), Metal Oxide Semiconductor Field Effect

Transistor (MOSFET), High Electron Mobility transistor (HEMT) etc. This struc-

ture is similar to standard silicon MOSFETs, where the 2-DEG is formed in silicon

instead of GaAs-AlGaAs interface. The role of the wide-gap AlGaAs is played by



Introduction 9

a thermally grown oxide layer (SiOx). Indeed much of the pioneering work on the

properties of two-dimensional conductors was performed using silicon MOSFETs [10]

Metal film fabrication

Similarly immense interest in mesoscopic physics was motivated by novel develop-

ments in metal film fabrication techniques. Consider, e.g., the conductance of a

rectangular conductor is directly proportional to its width (W ) and inversely pro-

portional to its length (L), i.e., G = σW
L

, where σ is the conductivity of the material

independent of its dimensions. The ring shaped resistor made up of polycrystalline

Figure 1.3: Transmission electron micrograph of a ring-shaped resistor made from
a 38 nm film of polycrystalline gold. The diameter of the ring is 820 nm and the
thickness of the wires is 40 nm. This structure is redrawn by me from the original
work of S. Washburn and R. A. Webb (1986) Adv. Phys. 35, 375. The structures
were fabricated by C. Umbach of IBM.

gold described in Fig. 1.3 was used for one of the landmark experiments in meso-

scopic physics [11] : the resistance of the ring was shown to oscillate as the magnetic

field through it was changed because the magnetic field modified the interference

between the electron waves traversing the the two arms of the ring. The devices were

fabricated on Si3N4 windows which are 100nm thick. A metal film was deposited

onto the wafer, the metal was gold (Au) or some material to resist oxidation. The
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film was coated with resist, and islands of resists were curved with conventional

electron-beam lithography to define contact pads. The resist was dissolved away

leaving the pad areas covered, and the wafer was diced into individual devices. The

individual chips were installed into a high resolution scanning transmission electron

microscope (STEM), and the device was drawn by rastering the STEM beam back

and forth in the desired pattern.

1.2 Prominent Mesoscopic Effects

Mesoscopic systems reveal a number of interesting physical phenomena, never ob-

served in the bulk. In this section, we briefly present a selection of the most im-

portant effects arising as a consequence of the quantum phase coherence of the

electronic wave functions in the mesoscopic regime. Many of the most significant ef-

fects appear in samples of reduced dimension like two-dimensional electron gases in

semiconductor heterostructures, one-dimensional systems (so-called quantum wires)

and structures in which electrons are completely confined, the so-called quantum

dots. Some conceptually important mesoscopic phenomena are the Aharonov-Bohm

oscillations in magnetoresistance, integer and fractional quantum Hall effect, uni-

versal conductance fluctuations, quantized conductance in quantum point contacts

and persistent current which we will discuss in next subsections.

1.2.1 Aharonov-Bohm Oscillations in Magnetoresistance

Aharonov and Bohm first proposed an experiment in 1959 that there exists effects

of potentials on charged particle even in the region where all the fields, viz., electric

and magnetic fields vanishes [12, 13]. This effect is named after Yakir Aharonov and

David Bohm. Fig. 1.4 is a schematic description of an experimental set-up, suited

for verifying the prediction of Aharonov and Bohm. In a metallic ring small enough

that the circumference of the ring is smaller than the phase coherence length, an in-

terference pattern should be present in the magnetoresistance of the device [14]. One

of the pioneering experiments in mesoscopic physics was performed by Washburn et

al. using a small ring, 820 nm in diameter, etched out a high quality gold film. They

observed that the conductance of normal metal ring oscillates as a function of mag-

netic flux enclosed by the ring. The fundamental period of the oscillations is found

out to be flux quantum, φ0 =
hc
e
. Classically no such oscillations can occur. This is

because the quantum phase memory of the electron is randomized during a travel

around the whole circumference. A quantum wave associated to such an electron

separates into two partial waves at the entrance of the ring and recombine at the

exit point. These electron waves moving along fixed paths acquire a phase difference

because of monotonically changing magnetic field. The interference between these
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two partial waves traversing two arms of the ring leads to this oscillatory behavior

of the conductance.

Figure 1.4: Schematic diagram of a circular ring connected to semi-infinite leads.
The conductor exhibits periodic oscillations in its conductance as a function of
enclosed magnetic flux φ.

However, Aharonov-Bohm effect observed in mesosopic rings is quite different

from this simplistic view. Complications arise due to non-locality and multiple

reflections at J1 and J2 because of which we cannot interpret the experimental results

as an interference between waves traversing the two arms. A detailed description of

this both in open system and in closed system in one-dimension is given in Chapter

3: “Aharonov - Bohm Effect”. This approach is followed when we deal with the

realistic quasi one-dimensional rings, multi-channel rings in Chapter 5 and Chapter

6.

1.2.2 The Quantized Hall Effect

The “Hall effect” or “Hall measurement” was discovered in the nineteenth century

[15]. This Hall measurement of conductivity in presence of weak magnetic field is

very useful for characterizing semiconducting thin films because both the electron

density and mobility can be measured simultaneously. When crossed magnetic and

electric fields are applied to a rectangular bar shown in Fig. 1.5, a voltage is induced

in a direction orthogonal to the crossed fields, as evidenced by an induced current

flowing in that direction - the Hall current. Crossed magnetic and electric fields,

denoted respectively, by ~H and ~E, act as velocity filters to free charges, letting

through only those whose velocity v is such that ~E + (~v/c) ~H = 0, or

~v

c
=

~E

~H
(1.1)
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For free charge carriers in a metal, the current density is

Figure 1.5: The Hall effect. A current I flows in a direction orthogonal to crossed
electric and magnetic fields. The Hall resistivity is defined as ρxy = V/I. The
conventional resistivity ρxx can be obtained by measuring the voltage drop along
the direction of the current. [16]

j = qn~v (1.2)

where q is the charge and n is the density. The Hall resistivity ρxy is defined as the

ratio of the electric field (in the y direction) to the Hall current density (in the x

direction):

j =
~E

ρxy
(1.3)

Substituting Eq. (1.3) into Eq. (1.2) and then into Eq. (1.1), we obtain

ρxy =
~H

qnc
(1.4)

Measurements of the Hall resistivity in various metals has yielded charge carrier

densities and provided the first demonstrations that there are not only negative

charge carriers (electron), but also positive ions (holes). From classical Drude model

[17], the longitudinal resistance is independent of the applied magnetic field whereas

the Hall resistance is a linear function of ~H. As long as the magnetic field is very

low, Drude model for Hall effect is valid.
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The Integer Quantum Hall Effect

In 1980 Klaus von Klitzing et. al. used the two-dimensional electron gas formed in a

silicon MOSFET device and performed the Hall experiment at very low temperatures

for stronger magnetic fields. They measured the direct resistivities ρxx and the

Hall resistivities ρxy. The longitudinal resistivities shows oscillation in ~H and the

Figure 1.6: Quantized Hall effect: Schematic representation of experimental data.
The filling fraction ν is the fraction of degenerate states in the lowest Landau levels
occupied by electrons. The Hall resistivity exhibits plateau of value 1/ν, at ν =
1, 2

3
, 1
3
(in units of h/e2.) The conventional resistivity becomes very small at these

values. The quantization is accurate to at least one part in 104.

Hall resistivity exhibits plateau corresponding to the minima in the longitudinal

resistivities shown in the Fig. 1.6. These features can be explained in terms of

Landau levels which are purely quantum effect. Thus two-dimensional electron gas

shows Quantum Hall effect [18] when it is placed under a strong perpendicular

magnetic field. As the magnetic field ~H increases, the degeneracy of the Landau

levels increases. Since the electron density does not depend on the field the filling
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fraction ν of the lowest Landau level decreases:

ν ≡ hcn

e ~H
(1.5)

The Hall resistivity exhibits plateaus at ν = 1, 2
3
, 1
3
, with values equal to 1/ν, in units

of h/e2. At the same time, the conventional resistivity ρxx drops to very low values.

This indicates that in the neighborhood of these special filling fractions the two-

dimensional electron gas flows with almost no resistance. The value at ν = 1, called

the integer quantized Hall effect. The Hall resistivity was found to be quantized

with a precision of one part in 105 [18].

At ν = 1 the lowest Landau level is completely filled, there is an energy gap above

the Fermi level. Low-energy excitations are therefore impossible, and so the centers

of the electron orbits flow like a free gas. Using Eq. (1.4), with n = eH/hc. The

Landau degeneracy per unit area, we immediately obtain the desired result.

ρxy =
h

e2
(1.6)

The precision of the Integer Quantum Hall Effect is so accurate that it now forms

the international standard of resistance.

The Fractional Quantum Hall Effect

Going to stronger magnetic fields and to lower temperatures in two-dimensional elec-

tron gases, one can observe additional plateaus of the Hall resistance at fractional

filling factors like ν = 1
3
, 1
5
etc. (Fig. 1.6). This so-called fractional quantum Hall

effect has been discovered by daniel Tsui et. al. [19] in 1982. The features at frac-

tional filling can be traced back to the existence of correlated collective quasi-particle

excitations [20]. Thus, in contrast to the integer quantum Hall effect, the Coulomb

interactions between the electrons is essential for the explanation of the fractional

quantum Hall effect. The quasi-particles have fractional charge (for instance e/3 at

ν = 1
3
). From shot noise measurements [21], it could be confirmed that the charge

carriers at ν = 1
3
in the fractional quantum Hall effect regime have indeed charge

e/3. After this confirmation, Tsui, Störmer and Laughlin received the 1998 Nobel

prize for the discovery and interpretation of the fractional quantum Hall effect.

1.2.3 Universal Conductance Fluctuations

At low temperatures, the conductance of disordered wires in the mesoscopic regime

exhibits pronounced fluctuations as a function of external parameters like the mag-

netic field or the Fermi energy [22]. These fluctuations were discovered [23] in

the low-temperature (below 1K) conductance of the inversion layer in a disordered
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silicon MOSFET. In 1986, Washburn and Webb [11] measured the fluctuation in

conductance of an Au wire as a function of applied magnetic field at 10mk. These

fluctuations are not time dependent noise as they are completely reproducible. The

origin of the fluctuations lies in the interference of different ways the electrons can

take when travelling through the sample, as sketched in Fig. 1.7. Supporting the

Figure 1.7: Possible paths of an electron through a disordered wire, with elastic
scattering processes at impurities. The interference of such paths is influenced by a
magnetic field or the value of the Fermi wave vector, leading to fluctuations of the
conductance in the mesoscopic regime.

earlier theory on conductance fluctuations [24] these data showed that the magni-

tude of fluctuation is of order e2

h
. These fluctuations are universal in nature because

firstly the variance of conductance is of order ( e
2

h
)2, independent of sample size and

the strength of impurities and secondly this variance decreases precisely by a factor

of two when time reversal symmetry is broken. This variance of conductance is

weekly dependent on the shape of the conductor. At zero temperature, for a quan-

tum wire the variance ∆G
G0

is independent of the mean free path lm, wire length L

or the number of transverse modes N as long as the wire is much longer than the

mean free path but much shorter than the localization length, i.e., lm≪L≪Nlm.

Various explanations came after the discovery of the universality of conductance

fluctuations. Imry’s argument was in terms of transmission eigenvalues [25]. Most

transmission eigen values are exponentially small in disordered conductor while a

fraction lm
L

of the total number N of transmission eigenvalues is of order unity. De-

pending on this transmission eigenvalues, the corresponding channels are referred as

closed and open channels. Only the open channels contribute to the conductance:
G
G0

≡ Nopen ≈ N lm
L
. Thus the fluctuations in conductance can be interpreted as

the fluctuations in number Nopen of the open channels in the sample. If the trans-

mission eigenvalues were uncorrelated, one would calculate that the fluctuations in

Nopen would have been of the order
√

Nopen which would imply the variance in con-
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ductance ∆G
G0

would be of order Nopen (>= 1). Due to the strong suppression of

fluctuations in Nopen by eigenvalue repulsion the variance of conductance is of order

unity.

1.2.4 Quantized Conductance in Quantum Point Contacts

A point contact is a very narrow link between two conducting materials. Such a

link can be formed by imposing a confining constriction in a wire or by forcing the

electrons to pass through a narrow channel defined electrostatically when they are

driven from one two- or three-dimensional region of the sample to the other. In the

case of very narrow constrictions of width W , narrower than the mean free path

and the phase coherence length (W ≪ lm, Lφ), such a constriction is called ballistic

quantum point contact. In 1988, van Wees et. al. [24] and Wharam et. al. [27]

Figure 1.8: QUANTUM POINT CONTACT scheme. The contact is defined in
a high-mobility two-dimensional electron gas at the interface of a GaAs-AlGaAs
heterojunctions. The point contact is formed when a negative voltage is applied
to the gate electrodes on top of the AlGaAs layer. Transport measurements are
made by employing contacts to the two-dimensional electron gas at either side of
the constriction [26].

independently observed the two-probe conductance of a quantum point contact at

sub-Kelvin temperature. In absence of applied magnetic field, they measured the
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conductance G as a function of the gate voltage Vg. Assuming the linear dependence

of the width of quantum point contact on Vg, they showed the conductance decreases

with narrowing constriction. However, around this classical dependence, G changes

in quantized steps of 2e2

h
. These data exhibited conductance plateaus quantized in

integer multiples of fundamental conductance G0 =
2e2

h
as G = NG0. Typically all

these measurements were performed in a two-terminal configuration where voltage

and current measured through the same set of source-drain contacts. The number

N increases with the decrease in gate voltage, i.e., as the gate-voltage is made

less negative. As the gate voltage is made more negative, the potential in the

narrow region of the quantum point contact sqeezes the 2-DEG, pushing successive

one-dimensional sub-bands through the Fermi energy. As each one-dimensional

sub-band is depopulated, the conductance drops by an amount G0 until finally

all the sub-bands are completely depopulated and conductance approaches zero.

The conductance quantization is not as exact as the Hall effect. A series resistance

originating from the wide 2-DEG regions have been subtracted [24] to line up the

plateaus at their quantized values and the plateaus are not completely flat.

Figure 1.9: Schematic representation of experimental data. The conductance
through a quantum point contact as a function of the gate voltage. The conductance
exhibits clear steps of height 2e2

h
(from [24]).
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1.2.5 Violation of Onsager’s Symmetry Relation

The Onsager-Casimir relation was originally derived for macroscopic conductors

using thermodynamic arguments. These are symmetry condition for correlation

functions. In electronic transport measurements, microscopic reversibility requires

that in the presence of a magnetic field ~B the conductance obeys Gij(B) = Gij(−B)

between contacts i and j. In particular for a two-probe conductor the conductance is

an even function of magnetic field G(B) = G(−B). Such relation generally hold for

macroscopic systems near thermodynamic equilibrium. Experimentally [28] there

is no evidence that this relation is ever violated in the linear response regime re-

gardless of the nature of the transport. When transport is phase coherent as it

occurs in mesoscopic conductors, the conductance is not just material specific but

also depends on the probe configuration. Four-probe conductance of a sample is not

symmetric under flux reversal, i.e., Gij,kl(B) 6= Gij,kl(−B). Herein, the first pair of

indices represents the probes used to supply and draw current, while the last pair

of indices denote the probes used to measure the potential difference. Though On-

sager’s symmetry relations fail in this regime but Onsager’s reciprocality relations

[29] holds. The reciprocality relations tell us the conductance of a mesoscopic sam-

ple is invariant under the magnetic field reversal accompanied by the exchange of

voltage and current probes, i.e., Gij,kl(B) = Gkl,ij(−B). This also prove that unlike

bulk sample there is no material specific quantities like resistivity (or conductivity).

Instead there are only global properties like resistance [30].

1.2.6 Persistent Current

The existance of persistent currents was first suggested by London in 1937 [31],

in his studies on the diamagnetism of aromatic rings (benzene rings). In 1938,

Hund suggested that such an effect could be present in clean, metallic samples at

low temperature [32]. The amplitude of the persistent current was first calculated

by Bloch and Kulik in the case of a clean, one-dimensional ring [33, 34], but their

existance in a real, diffusive three- dimensional metallic ring was only been predicted

by Büttiker et al. [14] in 1983. In their seminal paper, they suggested the existance of

persistent current even in a normal metal closed loop (e.g., ring) but in the presence

of Aharonov - Bohm flux. Later experiments in diffusive as well as ballistic normal

and semiconducting rings showed the existance of persistent currents. In 1990,

Lévy et al. measured the low-temperature magnetization response of 107 isolated

mesoscopic copper rings to a slowly varying magnetic flux [35]. At sufficiently low

temperature, the total magnetization response oscillates as a function of the enclosed

magnetic flux on the scale of half a flux quantum. In 1991, Chandrasekhar et al.

measured the low-temperature magnetic response of single, isolated, micron size Au

loops [36]. In 1993, Maily et al. measured the magnetic response of GaAlAs/GaAs
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mesoscopic ring [37]. There is a discrepancy between the experimentally measured

and theoretically predicted magnitude of the persistent currents. It is seen that the

magnitude of persistent currents measured experimentally is an order of magnitude

larger than predicted by theory. The theoretical aspects of persistent current is

described in detail in Chapter 3: Some Basic Theories.
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Chapter 2

TRANSPORT FORMALISMS

USED IN MESOSCOPIC

SYSTEM

“asato mā sad gamaya

tamaso mā jyotir gamaya

mrtyor mā amrtaṁ gamaya”

From ignorance lead me to truth

From darkness lead me to light

From death lead me to immortality.

–(1-6-28, Brihadaranyaka Upanishad).

Drude formalism is based on classical Brownian motion and explains Ohmic

behavior. Boltzmann transport is based on Brownian motion along with the ap-

propriate distribution law of the carriers. Then there are quantum formalisms like

Kubo formalism and Keldysh formalism but in mesoscopic system, the appropri-

ate formalism is Landauer-Büttiker formalism which explicitly accounts for sample

size, sample geometry, specific connectivity to reservoirs, sample specific impurity

configuration etc. Thermodynamic properties of a sample closely depend on the

mechanism of transport in the sample. One can study a transport property and

acquire knowledge about the thermodynamic property of the sample and vice versa.

Mesoscopic transport regimes can be categorized into three major regimes like

(i) localized transport regimes,

(ii) diffusive transport regime and

(iii) ballistic transport regime.

21
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2.1 Transport regime

Depending upon the values of characteristic lengths described in Chapter 1 in sub-

section 1.1.1, in comparison with the system size L, different transport regimes can

be distinguished.

(i) Localized transport regime For a disordered system we know that electronic

states are localized at x0 within a length scale Ll, i.e., the electron density typi-

cally decay as e
− (x−x0)

ll . Conductivity of such a sample in the bulk is 0 but if the

mesoscopic sample dimension is comparable to Ll then the sample can conduct

and its conductance has to be studied using Landauer-Büttiker formalism. Al-

though a conductivity cannot be defined as explained in Landauer-Büttiker

formalism which explicitly accounts for sample size, sample geometry, specific

connectivity to reservoirs, sample specific impurity configuration etc.

(ii) Diffusive transport regime This typically happen in mesoscopic metallic

samples. Here the disorder is not strong enough to localize the electrons but

also not weak enough to allow ballistic transport.

(iii) Ballistic transport regime This typically happens in mesoscopic semi-conducting

sample where Fermi energy is very low and for such long wavelengths impurity

scattering do not play a significant role.

Landauer-Büttiker formalism apply to all three regimes.

2.2 The Landauer-Büttiker Formalism

The earliest application of current formulas was in the calculation of the current-

voltage characteristics of tunnelling junctions where the transmission probability is

usually much less than unity [38]. Rolf Landauer in 1957 gave a physical argument

for calculating the conductance of a mesoscopic scatterer where leads are explicitly

accounted for. The effect of environment comes into picture through the attached

leads. In contrast to Kubo formalism which is time-dependent, the Landauer for-

mula connects the conductance of a mesoscopic system to its scattering properties.

Landauer brilliantly captured the wave nature of electrons in mesoscopic conduc-

tors. In the linear transport regime, i.e., for very small bias, the conductance is

effectively determined by the transmission probabilities of propagating modes analo-

gous to electromagnetic fields in optical waveguide [39, 40]. For ballistic conductor,

he drew attention to the wise question, ‘where does this resistance come from?’ that

arise when we apply this relation to conductors having transmission probabilities

close to unity. Imry [41] clarified this question using earlier notions due to Engquist
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and Anderson [42]. M. Büttiker [43, 44, 45] extended this approach to describe

multi-terminal measurements in presence of magnetic field.

2.2.1 General Landauer Conductance Formula

To derive the Landauer conductance formula, we consider a mesoscopic conductor

at zero temperature connected to two electron reservoirs (contacts) by ideal leads

(LEAD 1 and LEAD 2) as shown in Fig. 2.1 in quasi one-dimension. These leads

are made up of normal metal or semiconductor. There can be only single channel (or

modes) or multi-channel in these leads. These leads can act as a waveguide. In the

next paragraph we explain how the leads can act as an electron wave guide. The left

Figure 2.1: (a) A conductor having a transmission probability of T is connected
two large contacts through two leads (LEAD 1 and LEAD 2). ‘Zero’ temperature
is assumed such that the energy distributions of the incident electrons in the two
leads can be assumed to be step functions. (b) Dispersion relations E(k) vs. k for
the different transverse modes (or subbands) in the leads. Figure is taken from [6].

and right reservoirs are characterized by chemical potential µ1 and µ2 respectively.
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The conductor is represented as a scattering region (shaded region in Fig. 2.1).

When µ1 > µ2, current starts flowing through the system from left to right. The

left hand electron reservoir acts as a source and the right hand electron reservoir

acts as a sink of electrons and by definition, there is no phase relationship between

the absorbed and emitted electrons. The current is seen as a consequence of the

imbalance of chemical potential at the external reservoirs. The reservoirs act as an

inelastic scatterer and is a source of energy dissipation. T is the average probability

that an electron injected in LEAD 1 will transmit to LEAD 2. In the following

sections, we assume ‘zero-temperature’ so that there is current flow only in the

energy range µ1 > E > µ2.

Quantum Waveguide Theory

The two dimensional electron gas (2-DEG) described in Fig. 1.2 is like a two di-

mensional plane consisting of highly mobile electrons. This 2-DEG can be etched

from two sides to form a very thin strip of width a, negligible thickness (to be ex-

plained latter), and theoretically infinite length, called a quantum wire. LEAD 1

and LEAD 2 in Fig. 2.1 are quantum wires. They can act like an electron waveg-

uide. A waveguide is a structure that guide waves, such as electromagnetic waves

or sound waves. Waves in open source propagate in all directions, in this way they

lose their power proportionally to the square of the distance (inverse square law),

i.e., at a distance R from the source. The waveguide confines the wave to propagate

in one direction so that (under ideal condition) it loses no power while propagat-

ing. Waveguide may refer to any linear structure that conveys waves between its

endpoints. At very low temperatures (typically mK), the scattering by phonons is

significantly suppressed, and the phase coherence length can become large compared

to the system size. In this regime the electron maintains the single particle phase

coherence across the entire sample. To understand the waveguide nature of the leads

we consider a two-dimensional conductor that is uniform in the x-direction and has

some transverse confining potential V (y) shown in Fig. 2.2. The detailed analysis of

quantum waveguide theory for one-dimensional mesoscopic structures of waveguide

type is given in Xia’s paper [46].

The starting point is the Schrödinger equation:

− ~
2

2m∗
(
∂2ψ

∂x2
+
∂2ψ

∂y2
) + V (x, y)ψ(x, y) = Eψ(x, y) (2.1)

We assume that the width of the structure is narrow enough compared to the length

of the structure so that the energy spacing between the quantum energy levels pro-

duced by the transverse confinement is much larger than the energy range of the

longitudinal transport. Without any loss of generality we take V (x, y) = V (y) to be
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Figure 2.2: A rectangular conductor assumed to be uniform in the x-direction,
extending from x = −∞ to x = ∞ and having some transverse confinement potential
V (y).

an infinite square well potential of width a. That is

V (y) = 0 for− a/2 ≤ y ≤ a/2

and

V (y) = ∞ for|y| > a/2 (2.2)

The wave functions can be obtained by solving Eq. (2.1). From Eq. (2.1) and

(2.2) we get

− ~
2

2m
(ξ(y)

∂2φ(x)

∂x2
+ φ(x)

∂2ξ(y)

∂y2
) + V (y)φ(x)ξ(y) = Eφ(x)ξ(y)

where

ψ(x, y) = φ(x)ξ(y) (2.3)

Dividing both sides by φ(x)ξ(y) we get

− ~
2

2m
[

1

φ(x)

∂2φ(x)

∂x2
+

1

ξ(y)

∂2ξ(y)

∂y2
] + V (y) = E

− ~
2

2m
[

1

φ(x)

∂2φ(x)

∂x2
+

1

ξ(y)

∂2ξ(y)

∂y2
] + V (y) = E1 + E2 (2.4)
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where

E = E1 + E2 (2.5)

After separating the variables we get

− ~
2

2m

1

φ(x)

∂2φ(x)

∂x2
= E1 (2.6)

− ~
2

2m

1

ξ(y)

∂2ξ(y)

∂y2
+ V (y) = E2 (2.7)

Eq. (2.6) has a solution of the form

φ(x) = e±iknx (2.8)

or

φ(x) = Ane
iknx + Bne

−iknx (2.9)

From Eq. (2.6) we can write

E1 =
~
2k2n
2m

From Eq. (2.7)

− ~
2

2m

∂2ξ(y)

∂y2
+ V (y)ξ(y) = E2ξ(y) (2.10)

Eq. (2.10) has a solution of the form

ξ(y) = e±ik
′y

Thus the wave function ξ(y) becomes

ξ(y) = Cle
ik′y +Dle

−ik′y

or

ξ(y) = Flcos(k
′y) +Glsin(k

′y) (2.11)

where Fl = Cl +Dl and Gl = (Cl −Dl)i. When y = −a/2, ξ(−a/2) = 0. So,

ξ(−a/2) = Flcos(
k′a

2
)−Glsin(

k′a

2
) = 0 (2.12)

Similarly, when y = +a/2 , ξ(a/2) = 0. So,

ξ(a/2) = Flcos(
k′a

2
) +Glsin(

k′a

2
) = 0 (2.13)

Linear combination of cos function and sin function can not be zero for a given k′.
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They have to be separately zero.

Thus, solution is either

ξ(y) = Flcos(k
′y) (2.14)

or

ξ(y) = Glsin(k
′y) (2.15)

Let us first consider the even solution i.e., Eq. (2.14), at y = −a/2, ξ(−a/2) = 0.

Excluding Fl = 0

cos(k′a/2) = 0 = cos(
(2l + 1)π

2
)

where l = 0, 1, 2, 3, ....... Therefore,

k′ =
(2l + 1)π

a
(2.16)

Putting the value of k′ in Eq. (2.14) we get

ξ(y) = Flcos[
(2l + 1)πy

a
] (2.17)

Now, let us consider the odd solution, i.e.,

ξ(y) = Glsin(k
′y)

At y = a/2, ξ(a/2) = 0. Excluding Gl = 0

sin(k′a/2) = 0 = sinl′π

where l′ = 0, 1, 2, 3, ...... therefore,

k′ =
2l′π

a
(2.18)

Thus, the odd solution is

ξ(y) = Glsin(
2l′πy

a
) (2.19)

Now combining Eq. (2.15) and Eq. (2.17) we can write

ξ(y) = Knsin
nπ

a
(
a

2
+ y) (2.20)

where n = 0, 1, 2, 3, .... any integer. For even values of n, we get Eq. (2.17) and for

odd values of n, we get Eq. (2.15). Here Kn is the normalization constant. From

Eq. (2.5) we can write

E =
~
2kn

2

2m
+
n2π2

~
2

2ma2
(2.21)
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Putting the value of φ(x) from Eq. (2.9) and ξ(y) from Eq. (2.20) in Eq. (2.3) the

complete wavefunction becomes

ψ(x, y) = [
An

(
√
kn)

eiknx +
Bn

(
√
kn)

e−iknx][Knsin
nπ

a
(
a

2
+ y)] (2.22)

Since we know that the normalization constant include a factor 1
(
√
kn)

to conserve

current. This shows how the structure In Fig. 2.2 has become a waveguide. A right

moving wave for example is given by

ψ(x, y) =
Lne

iknx

√
kn

[sin
nπ

a
(
a

2
+ y)] (2.23)

and it is a plane wave that remains undiminished in amplitude Ln

kn
upto +∞. A left

moving wave for example is given by

ψ(x, y) =
Mne

−iknx
√
kn

[sin
nπ

a
(
a

2
+ y)] (2.24)

and it is a plane wave that remains undiminished in amplitude Mn

kn
upto −∞. In

a quantum waveguide Eq. (2.23) implies a steady incident beam towards the right

and Eq. (2.24) implies a steady incident beam towards the left. If such a steady

beam encounters a scatterer then scattering will take place and such scattering is

crucial to understand mesoscopic phenomena. kn for different n correspond to the

different partial waves.

Scattering is a general physical process where some form of radiation, such as

light, sound, or moving particles, are forced to deviate from a straight trajectory

by one or more paths due to localized non-uniformities in the medium through they

pass. Electron motion in a mesoscopic sample is governed by Schrödinger equation

and elastic scattering plays a very prominent role. Elastic scattering can be treated

in the time dependent approach wherein we see the time evolution of a wave packet

or it can be treated in the time independent approach where we make a partial wave

analysis of a steady beam. In the probabilistic interpretation of quantum mechanics

both approaches give identical results. We will essentially use this second approach

in this thesis.

General solution of scattered wave function in three-dimension [47] is given by

ψ(r, θ, φ) −→
r→∞

A[eikz + f(θ, φ)
eikr

r
] (2.25)

In Eq. (2.3), the term eikr

r
signifies same number of particles within a sphere of
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Figure 2.3: Scattering phenomena in three dimension.

radius r, so intensity has to fall as 1
r
. f(θ, φ) signifies angular dependence.

dσ

dΩ
= |f(θ, φ)|2

where dσ = differential scattering cross section. f(θ, φ) expands as

f(θ, φ) =
1

k

∞
∑

l=0

(−1)l+1ClYl(θ, φ) (2.26)

For different l vanishes we get different partial waves.

The same phenomenon in quasi one-dimension is schematically shown in Fig.

2.4. From Eq. (2.23) and Eq. (2.24), we can write the wave function in Lead 1 and

Lead 2 as shown in the Fig. 2.4 in respective places. Comparing with Eq. (2.26) we

find here f(θ, φ) takes the form r
(1)
1 , r

(1)
2 , t

(1)
1 , t

(1)
2 etc which again constitute different

partial waves.

Current calculation

In a narrow conductor due to confinement in transverse direction, several modes

or channels are present. Only the propagating modes, i.e., k2x ≥ 0 participate in
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Figure 2.4: Mesoscopic transport problem in quasi one-dimension. Mesoscopic sam-
ple (blue region) connected to two electron reservoirs characterized by chemical
potential µ1 and µ2, respectively, by ideal leads (Lead1 and Lead2). A potential
difference, µ1 − µ2, drives a current I through the sample.

conductance. The dispersion curve for each mode has a cut-off energy

εn = E(n, k = 0)

below which it cannot propagate. The number of transverse modes at an energy E

is obtained by counting the number of modes having cut-off energies smaller than

E:

M(E) =
∑

n

v(E − εn) (2.27)

For simplicity we consider equal number of transverse modes M(E) are present in

both leads, i.e., leads are of equal width.

Let us consider a single transverse mode whose kx states are occupied according

to some function f(E). A uniform electron gas with m electrons per unit length

moving with a velocity vi carries a current equal to emv. The current injected from

left reservoir into lead 1 carried by channel i in a small energy interval dE is given

by

dI iin = evi(∂n
(i)/∂E)f(E)dE (2.28)
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Here vi is the longitudinal velocity along x-direction of the electrons at the energy

E and the density of states in the leads for the ith mode is

(∂n(i)/∂E) =
∂n(i)

∂ki
∂k(i)

∂E
=

1

2π

1

~vi

and f(E) is the Fermi distribution. The total current flow dIS in a small energy

interval dE through the system is given by the current injected into the wires by

reservoirs multiplied by the transmission coefficient T . Using these two relations in

Eq. (2.28) we find that

dI iin =
e

2π~
f(E)dE (2.29)

which is same for all propagating modes (channels) present in the system. Thus the

total influx of current from LEAD 1 in Fig. 2.1 is given by

dIin =
e

2π~
M(E)f(E)dE (2.30)

In linear transport regime µ1 − µ2 is very small and taken to be dE. We can write

the above equation as

dIin =
2e

h
M(E)(µ1 − µ2) (2.31)

2 is incorporated in Eq. (2.31) due to spin and the functionM(E) gives the number

of modes that are above cut-off at energy E. The current carried per mode per unit

energy by an occupied state is equal to 2|e|/h (which is about 80nA.meV).

Contact resistance

Assuming that the number of modes M is constant over the energy range µ1 > E >

µ2, we can write

Gc =
dIin

(µ1 − µ2)/e
(2.32)

Substituting dIin from Eq. (2.31) we get

Gc =
2e2

h
M (2.33)

so that the contact resistance, which is the resistance of a ballistic waveguide is

given by

G−1c ≡ (µ1 − µ2)/e

dIin
=

h

2e2M
≈ 12.9kΩ

M

This resistance occurs at the contact between left reservoir and LEAD 1. The contact

resistance goes down inversely with the number of modes. The contact resistance of

a single-moded conductor is ∼ 12.9 kΩ which is certainly not negligible. This is the

resistance one would measure if a single moded ballistic conductor were sandwiched



32 Transport Formalisms Used in Mesoscopic System

between two conductive contacts.

General two-probe Landauer formula

The total current flow dIS in a small energy interval dE through the system is given

by the current injected into the wires by reservoirs multiplied by the transmission

coefficient T =
∑

i,j |t
(i)
j |2. Thus,

dIS = dI
(i)
in

∑

i,j

|t(i)j |2 (2.34)

G =
2e2

h

∑

i,j

|t(i)j |2 (2.35)

General four-probe Landauer formula

One can fabricate a four-probe arrangement (see Fig. 2.5) like a Hall bridge with

two voltage probes located right across a scatterer. If we assume that the probes

will measure the local electrochemical potentials for the +k and −k states (or some

specified combination of the two) then we expect that

µP1 − µP2 = (1− T )∆µ

where ∆µ ≡ (µ1−µ2). The resistance measured in a four-probe configuration should

be

R4t =
(µP1 − µP2)e

dIS
=

h

2e2m

1− T

T
(2.36)

If we try to apply this result we run into three separate problems.

Firstly, mesoscopic probes are often invasive, i.e., they change what we are trying

to measure. With macroscopic conductors, the probes represent a minor pertur-

bation. Their presence does not change the current significantly. But for a small

conductor, the probes can very well be the dominant source of scattering (and hence

resistance). There is no fundamental reason why a voltage probe has to be strongly

coupled to the conductor. There has been some work using weakly coupled scan-

ning tunneling probes to observe resistivity dipoles around individual scatterer and

it is likely that there will be more of such non-invasive microscopic measurements

as nanotechnology progresses.

Secondly, mesoscopic probes are seldom identical so that the two voltage probes

could very well couple differently to the +k and −k states, e.g., suppose a probe

were bent over to the right like P2 in Fig. 2.5 (b) then it could couple much better

to +k states than to −k states. This is because a small deflection would make an

electron in a +k state enter the probe but a large angle scattering is needed to make
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Figure 2.5: (a) A four-probe arrangement designed to measure the potential drop
across a scatterer. (b) If the probes are bent as shown here they could show an
apparent negative resistance if T > 0.5. Figure is taken from [6].

a −k state enter. Hence probe P2 would register a potential close to that of the +k

state. Similarly, if a probe were bent over to the left like P1 in Fig. 2.5 (b) it would

couple more strongly to a −k state and register a potential close to that that of the

−k state. In practice one has little control over the microscopic potential profiles

that determine the coupling of the probes to the +k and −k states. We expect to

measure the resistance given by Eq. (2.36) only if the two voltage probes couple

identically to the +k and −k states noninvasively.

Finally, mesoscopic measurements are strongly affeted by quantum interference

effects unless the distance of the probes from the scatterer is much greater than the

phase-relaxation length. Here we will consider s strongly reflecting scatterer with

T ≪ 1. In that case the electrochemical potentials for the +k and −k states are both
nearly equal to one to the left of the scatterer and zero to the right of the scatterer.

We would expect that a probe to the left of a scatterer should measure a potential

of approximately one (equal to that of the left reservoir). However, due to quantum

interference it could measure any potential between zero and one depending on its
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distance from scatterer. The reason is that the probe may not be able to ‘see’ the

electrons from the left reservoir due to destructive interference between the incident

wave and the reflected wave. As a result it could float to a potential closer to that

of the right reservoir even though it is located to the left of a strongly reflecting

scatterer. We can use Eq. (2.36) to describe the four terminal resistance only

if such interference effects are either absent (because of a short phase relaxation

length) or carefully eliminated (by averaging measurements over a wavelength or

using ‘directional couplers’ to couple the probes so that they see only the +k and

−k states).

The problem can be appreciated by considering a simple analogy with optics. A

beam of unpolarized light is a 50-50 mixture of photons that are polarized in the

x-direction and photons that are polarized in the y-direction. But so is a beam of

light that is polarized at 45 degrees to the x-axis. Yet the two are very different

physically and there are many experiments that can distinguish between them. One

way to represent this difference is by using a density matrix:

[

0.5 0

0 0.5

]

(unpolarized)

[

0.5 0.5

0.5 0.5

]

(45-degree polarized)

The diagonal elements of the density matrix represent the ususal distribution

function while the off-diagonal elements represent phase-correlations. For unpo-

larized light, the x- and y- polarizations are uncorrelated so that the off-diagonal

elements are zero. For 45-degree polarized light the off-diagonal elements are as

large as the diagonal ones due to the perfect phase correlation between the x- and

y- polarizations.

We have an analogous situation in phase-coherent conductors with +k and −k
states playing the role of x- and y- polarizations. The distribution function only give

us the diagonal elements. The rest of the story is contained in the off-diagonal ele-

ments which cannot be neglected unless the phase-relaxation length is much shorter

than the other length scales.

We will now describe an approach that was developed by Büttiker following

the work of Engquist and Anderson [42], which allows us to describe multi-terminal

phase coherent conductors directly in terms of measured currents and voltages, com-
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pletely ignoring any questions regarding the internal state of the conductor.

2.2.2 Büttiker Formula

Since 1985 many mesoscopic experiments have been conducted using miniature Hall

bridges fabricated on both metallic and semiconducting samples. However, because

of the reasons mentioned above, for a while there was a serious confusion about how

such four-terminal measurements should be interpreted. Indeed there was no agree-

ment regarding the two-terminal resistance either, primarily because the importance

of the contact resistance in this context was not recognized.

Büttiker found a simple and elegant solution to this problem. He noted that since

there is really no qualitative difference between the current and voltage probes, one

could treat all the probes on an equal footing and simply extend the two-terminal

linear response formula

IS =
2e

h
T̄ [µ1 − µ2]

by summing over all terminals (indexed by p and q) as follows

ISp =
2e

h

∑

q

[T̄q←pµP − T̄p←qµP ].

We can rewrite this in the form (with V = µe)

ISp =
∑

q

[GqpVp −GpqVq] (2.37)

where

Gpq ≡
2e2

h
T̄p←q (2.38)

The arrows in the subscripts have been inserted just as a reminder that the electron

transfer is backwards from the second subscript to the first one.

The coefficients G in Eqs. (2.37, 2.38) must satisfy the following ‘sum rule’,

regardless of the detailed physics, in order to ensure that the current is zero when

all the potentials are equal:
∑

q

Gqp =
∑

q

Gpq (2.39)

This allows to rewrite Eq. (2.37) in an equivalent form

ISp =
∑

q

Gpq[Vp − Vq] (2.40)

The conductance coefficients (G) also obey the relation as follows (where B is the
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magnetic field)

[Gqp]+B = [Gpq]−B (2.41)

Unlike the sum rule in Eq. (2.41), there is no simple reason why this relation has

to be true regardless of the detailed physics. To prove this, one needs to assume a

particular model for the transport. Experimentally, however, there is no evidence

that this relation is ever violated (in the linear transport regime) regardless of the

nature of the transport.

A couple of comments here arise: firstly, we note that the potential VP at a

voltage probe can be rewritten from Eq. (2.40) as (setting IP = 0)

VP =

∑

q 6=P GPqVq
∑

q 6=P GPq

This means that the potential measured at a floating terminal P is simply a weighted

average of all other terminal potentials q and the weighting is determined by the

conductance coefficient GPq which is proportional to transmission function from the

terminal q to the floating terminal P . The shape and construction of the probes

affects the measured potential through the transmission functions. Secondly, if

the magnetic field is zero then the coefficients are symmetric and Eq. (2.40) is

precisely what we get if we apply Kirchhoff’s law to a network of conductors Gqp(=

Gpq) connecting every terminal q to every other terminal p. This simple resistor

model, however, cannot be used in a non-zero magnetic field since the conductance

coefficients (G) are usually not symmetric, i.e., Gqp 6= Gpq.

2.3 Summary

In this chapter, the basic theoretical descriptions of transport formalism of meso-

scopic systems have been discussed. First we have given a brief idea about transport

regime. Landauer conduntance formula has been derived in detail taking an example

of a mesoscopic conductor connected to electron reservoirs (contacts) by ideal leads

at zero temperature. How these leads can act as quantum waveguide has been de-

scribed in detail. Elastic scattering plays a very important role in electron motion.

We have discussed briefly elastic scattering in time independent approach. Lan-

dauer two-probe conductance formula will be very useful to calculate conductance

in multi-channel Aharonov-Bohm ring in Chapter 5 and Chapter 6.



Chapter 3

AHARONOV - BOHM EFFECT

“Never underestimate the pleasure your,

audience can receive by learning about

something they already know.”

–R. P. Feynman .

The description of electromagnetic phenomena can be simplified by introduction

of electromagnetic potentials: scalar potential φ and vector potential ~A. To write

electric and magnetic field in form of potentials is useful in Lagrangian and Hamil-

tonian formalism. Until the beginning of the 20th century it was widely believed

that potentials are only a mathematical construct to simplify calculations and that

they contain no physical significance.

With the development of quantum mechanics in the early 20th century, this view

was put under question, because Schrödinger equation, basic equation of quantum

mechanics, doesn’t contain fields but potentials. Here the question arises: “which

description of electromagnetic phenomena is more fundamental, through electric and

magnetic fields or through scalar and vector potentials?” In 1959, Yakir Aharonov

and his doctoral advisor David Bohm, proposed an experiment to address this [12].

The heart of the experiment is the effect in which wavefunction acquire some addi-

tional phase when travelling through space with no electromagnetic fields, but only

potentials. This is the Aharonov-Bohm effect.

Aharonov-Bohm effect plays a very significant role in mesoscopic physics essen-

tially because interference effects play a very crucial role there. In this chapter we

give a thorough theoretical analysis of Aharonov-Bohm effect in one-dimension as

this will be very useful to analyze the multi- channel rings in Chapter 5 and Chapter

6.

The Aharonov-Bohm effect [12, 13] provides a mechanism for tuning the phase of

an electron wave by means of an electric or magnetic field and controls the switching

37
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action of several proposed quantum interference devices. The magnetic Aharonov-

Bohm effect has been clearly demonstrated in metal rings and cylinders [11, 48] and

with much larger amplitude in 2-DEG rings [49, 50, 51, 52, 53].

3.1 Aharonov - Bohm Effect in Open One Dimen-

sional Ring

Now we will discuss the basic elastic scattering problem of a one-dimensional ring

pierced by a magnetic flux through the centre and connected to two electron reser-

voirs via perfect leads (quantum wires) in both sides. The system described in Fig.

3.1 represents an open system. On the left of this system there is source reservoir

characterized by a well defined chemical potential µ1, and on the right there is drain

reservoir characterized by chemical potential µ2. The left hand electron reservoir

acts as a source and the right hand electron reservoir acts as a sink of electrons

and by definition, there is no phase relationship between the absorbed and emit-

ted electrons. Electrons emitted by the reservoir propagate along the perfect lead

with potential V = 0 to the junction with the one-dimensional ring. At the junc-

tion, electrons are partially reflected back to the reservoir and partially transmitted

along the one-dimensional ring with potential V 6= 0. Electrons in the ring will

eventually reach the reservoir via the junction after some time delay. This gives

rise to finite-life time broadening for the electron states in the ring. In the ring,

the scattering processes are elastic. The reservoirs act as an inelastic scatterer and

is a source of energy dissipation. Since the reservoirs keep the chemical potential

fixed, the statistical mechanical description for this system must be based on the

grand canonical ensemble. This implies that the opened and closed ring systems

belong to different statistical treatments. The exact description of the system is

important since the dependence of the currents versus flux has a different behavior

if the chemical potential is held fixed or if the number of electrons is fixed to an

even or odd number. A potential difference (µ1 − µ2) between the source reservoir

and the drain reservoir drives a transport current. Incident electrons coming from

the source reservoir on the left get scattered by the ring. Division of wave front oc-

curs at junction J1; a partial wave propagates along the upper arm of the ring and

another partial wave propagates along the lower arm of the ring. These two partial

waves recombine and give a transmittance that bears the signature of interference

between the two partial waves along the two arms of the ring. This interference can

be modified by an Aharonov-Bohm flux through the centre of the ring. Different

regions are marked as I, II, III and IV. α is the Aharonov-Bohm phase an electron

picks up in region II and β is that in region III. J1 is the junction where the regions

I, II and III meet and J2 is the junction where the regions II, III and IV meet. The
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current injected by the reservoir into the lead attached to it around the small energy

interval dE is given by

dIin = ev(dn/dE)f(E)dE. (3.1)

Here v = ~k/m is the velocity of the electrons at the energy E. (dn/dE) = 1/(eπ~v)

is the density of states in the perfect leads (wire), and f(E) is the Fermi distribution

being 1 at T = 0. The total current flow dIS in a small energy interval dE through

the system is given by the current injected into the wires by reservoirs multiplied

by the transmission coefficient |t|2 which is given by

dIS = dIin|t|2. (3.2)

Figure 3.1: Schematic diagram of a quantum ring made up of normal metal or
semiconductor in one dimension. The ring is attached to perfect leads (quantum
wire) in both sides. On the left there is source reservoir having chemical potential
greater than the chemical potential of the drain reservoir. Current will flow from
source to drain. The wave functions of the electron in different regions have been
shown in the figure at their respective places.

The Schrödinger equation for this system is given by

[− ~
2

2m

∂2ψ(x)

∂x2
+ V (x)]ψ(x) = Eψ(x) (3.3)

The wave function in region I of the system described in Fig. 3.1 is given by

ψI = eikx + re−ikx,
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where r is the reflection amplitude. The wave function in region IV of the system

described in Fig. 3.1 is given by

ψIV = teikx,

where t is the transmission amplitude. k is the wave vector given by k =
√

2mE
~2

.

The wave function in region II of the quantum ring is given by

ψII = Aeiqx + Be−iqx,

where A and B are the amplitudes and q is the wave vector in the quantum ring.

The wave function in region III of the quantum ring is given by

ψIII = Ceiqx +De−iqx,

where C and D are the amplitudes and q is the wave vector in the quantum ring.

The magnetic flux is restricted to the shaded region of radius r0 at the centre of the

ring and is given by

φ =

∫

s

~B.d~s

or, φ =
∫

s
(~∇× ~A).d~s, since ~B = ~∇× ~A. Now using Stoke’s theorem:

φ =

∮

~A.d~x

or,

φ = AL,

where L is the total length of the ring.

A =
φ

L
=
B.πr20
2πr

, (3.4)

and ~A = Ax̂ That means for r > r0, B = 0 but ~A is non zero and its magnitude

decay as 1
r
.

Therefore for the electrons in the one-dimensional ring the Schrödinger equation

is

[
1

2m
(~p− e

c
~A)2 + V (x)]ψ(x) = Eψ(x) (3.5)

or,
1

2m
(~p− e

c
~A)2ψ(x) = [E − V (x)]ψ(x) (3.6)

Applying Gauge transformation (since ~∇× ~∇χ is 0 for any arbitrary scalar function

χ, adding ~∇χ to ~A does not change ~B. However an appropriate phase factor is to
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be added to the wave function.):

[
1

2m
(~p− e

c
( ~A− ~∇χ))2]ψ(x)e− ie

~c

∫
~∇χ.d~x = [E − V (x)]ψ(x)e−

ie
~c

∫
~∇χ.d~x

Since ~∇χ is arbitrary, we have taken ~A = ~∇χ. or,

1

2m
[~p]2ψ(x)e−

ie
~c

∫
~A.d~x = [E − V (x)]ψ(x)e−

ie
~c

∫
~A.d~x

or,
1

2m
[~p]2ψ′(x) = [E − V (x)]ψ′(x) (3.7)

where,

ψ′(x) = ψ(x)e−
ie
~c

∫
~A.d~x (3.8)

The phase factors in the wavefunctions can be justified as follows where we substitute

Eq. (3.8) in Eq. (3.7)

First we will evaluate LHS of the Eq. (3.7)

~pψ′(x) = ~p[ψ(x)e−
ie
~c

∫
~A.d~x]

=
~

i

d

dx
[(ψ(x)e−

ie
~c

∫
~A.d~x)]

= [~pψ(x)]e−
ie
~c

∫
~A.d~x − (e ~A/c)ψ(x)e−

ie
~c

∫
~A.d~x

We can get Eq. (3.5) in the following way starting from Eq. (3.7)

1

2m
[~p]2ψ′(x) = [E − V (x)]ψ′(x)

or,

1

2m
[~p2ψ(x)e−

ie
~c

∫
~A.d~x − 2(

e ~A

c
)~pψ(x)e−

ie
~c

∫
~A.d~x

− (
e ~A

c
)ψ(x)e−

ie
~c

∫
~A.d~x(− ie

~c
) ~A

~

i
]

= [E − V (x)]ψ(x)e−
ie
~c

∫
~A.d~x (3.9)

or,

1

2m
[~p2ψ(x)− 2e ~A

c
~pψ(x) +

e2A2

c2
ψ(x)]e−

ie
~c

∫
~A.d~x = [E − V (x)]ψ(x)e−

ie
~c

∫
~A.d~x

1

2m
[~p− eA

c
]2ψ(x)e−

ie
~c

∫
~A.d~x = [E − V (x)]ψ(x)e−

ie
~c

∫
~A.d~x
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Cancelling e−
ie
~c

∫

~A.d~x from both sides we get

1

2m
[~p− eA

c
]2ψ(x) = [E − V (x)]ψ(x)

So instead of solving Eq. (3.7) we can solve the following equation

− ~
2

2m

∂2ψ′(x)

∂x2
= [E − V (x)]ψ′(x)

− ~
2

2m

∂2ψ′(x)

∂x2
= q2ψ′(x)

where, q2 = E − V (x). It is a second order differential equation, thus its general

solution can be written as: ψ′(x) ≈ eiqx We know,

ψ′(x) = ψ(x)e−
ie
~c

∫
~A.d~x

Or,

ψ(x)e−
ie
~c

∫
~A.d~x = eiqx

ψ(x) = eiqx.e
ie
~c

∫ L
0
~A.d~x (3.10)

Now we have to match the solution at J1 and J2.

According to Feynman path approach the amplitude of the electron wavefunction

at an arbitrary point P in the one dimensional quantum ring described in Fig. 3.1

is the sum of amplitudes of the electron arriving at P along all possible classical

paths. Thus using Feynman path approach we get the wave function at P in region

II (whose coordinate is x) is given by

ψPII = 1t′eiqx+
ie
~c
~Ax + 1t′eiql1+iαr′e−iqxe

ie ~A
~c

(x−l1)

+ 1t′eiql1+iαr′e−iq(−l1)−iαr′′eiqxe
ie ~A
~c
x

+ 1t′eiql1+iαr′e−iq(−l1)−iαr′′eiql1+iαr′e−iqxe
ie ~A
~c

(x−l1) + ... = 0 (3.11)

where t′ is the transmission amplitude from region I to region II, r′ is the reflec-

tion amplitude in region II at junction J2, r′′ is the reflection amplitude in re-

gion II at junction J1. Let us consider one particular term in Eq. (3.11), i.e.,

1t′eiql1+iαr′e−iq(−l1)−iαr′′eiqxe
ie ~A
~c
x. The incident wave function eikx at junction J1

(x = 0) is eik0 = 1. Now 1t′ is transmitted from region I to region II across junc-

tion J1. 1t′eiql1+iα is transmitted from junction J1 to junction J2 along region II.

Here α = e
~c

∫ l1
0
~A.d~x = e

~c
Al1. 1t′eiql1+iαr′ is reflected back to region II at junction

J2. 1t′eiql1+iαr′e−iq(−l1)−iα is transmitted from junction J2 to junction J1 along the

region II. 1t′eiql1+iαr′e−iq(−l1)−iαr′′ is reflected from junction J1 back to region II.

Now this propagates from J1 to arbitrary point P and picks up a phase eiqxe
ie ~A
~c
x
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Therefore,

ψPII = eiqxe
ie ~A
~c
x(it′ + it′eiql1+iαr′eiql1−iαr′′ + .....)

+ e−iqxe
ie ~A
~c

(x−l1)(1t′eiql1+iαr′ + 1t′eiql1+iαr′e−iq(−l1)−iαr′′eiql1+iαr′ + ....)

It can be written as

ψPII = Aeiqxe
ie ~A
~c
x + Be−iqxe

ie ~A
~c

(x−l1)

where

A = (it′ + it′eiql1+iαr′eiql1−iαr′′ + .....)

and

B = (1t′eiql1+iαr′ + 1t′eiql1+iαr′e−iq(−l1)−iαr′′eiql1+iαr′ + ....).

Therefore, ψPII at x = 0, i.e., ψPII(0) is given by

ψPII(0) = A+Be−
ie ~Al1
~c = A+ Be−iα

ψPII at x = l1, i.e., ψ
P
II(l1) is given by

ψPII(l1) = Aeiql1+
ie ~Al1
~c + Be−iql1 = Aeiα+iql1 + Be−iql1

The boundary conditions are due to single valuedness of the wave function and

conservation of the current. Here at junctions J1 and J2 we take

ψI(0) = ψII(0) = ψIII(0)

ψII(l1) = ψIII(l2) = ψIV (0)

From this we get

A+ Be−iα − r = 1 (3.12)

Ceiβ+iql2 +De−iql2 − r = 1 (3.13)

Aeiα+iql1 + Be−iql1 − t = 0 (3.14)

C +De−iβ − t = 0 (3.15)

There are two more equations due to Kirchhoff’s law. Now Kirchhoff’s law at

the junction can be formulated as follows.
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In one dimension, the Schrödinger’s equation is

[− ~
2

2m

∂2ψ(x)

∂x2
+ V (x)]ψ(x) = Eψ(x)

Or

− ~
2

2m
∇2ψ(x) + V (x)ψ(x) = Eψ(x)

− ~
2

2m

∫

V ′

∇2ψ(x)dV ′ +

∫

V ′

V (x)ψ(x)dV ′ =

∫

V ′

Eψ(x)dV ′

Here V ′ is a small volume enclosed by a surface S ′, enclosing the junction J1.

− ~
2

2m

∫

V ′

~∇.~∇ψ(x)dV ′ +
∫

V ′

V (x)ψ(x)dV ′ =

∫

V ′

Eψ(x)dV ′

lim
V ′→0

∫

S′

~∇ψ(x).dS ′ + lim
V ′→0

∫

V ′

V (x)ψ(x)dV ′ = lim
V ′→0

∫

V ′

Eψ(x)dV ′

Now

lim
V ′→0

∫

V ′

V (x)ψ(x)dV ′ = 0

as the V ′ is shrinking to 0 and

lim
V ′→0

∫

V ′

E(x)ψ(x)dV ′ = 0

Therefore it follows that
∫

S′

~∇ψ(x).d~S ′ = 0

Another boundary condition is
∑

i
dψi

dxi
= 0. For the partial waves the integration

becomes a sum and we can write

−iqA+ iqBe−iα + iqCeiβ+iql2 − iqDe−iql2 − ikr = −ik (3.16)

iqAeiql1+iα − iqBe−iql1 − iqC + iqDe−iβ − ikt = 0 (3.17)

We will solve Eqs. (3.12 - 3.17) by matrix inversion to calculate A, B, C and D

which are the amplitudes in the one-dimensional ring described in Fig. 3.1 and r and

t are the reflection and transmission amplitudes, respectively in the leads attched to

the ring. We will generalize this theoretical analysis for open one-dimensional ring

to solve the multi-channel Aharonov-Bohm ring which we will describe in Chapter

5 and in Chapter 6 also.



Aharonov - Bohm Effect 45

3.2 Aharonov - Bohm Effect in Closed One Di-

mensional Ring

Here we take a one dimensional ring pierced by magnetic field, such that the field

is confined to only the grey region in Fig. 3.2 and the electrons in the ring do not

feel the magnetic field. Electrons in one dimensional rings can support a current

around the ring in thermodynamic equilibrium, even at zero temperature when only

the many-body ground state is occupied. This current depends on the magnetic

flux φ piercing the ring and cannot decay dissipatively. It therefore flows forever

even in normal conducting materials and this is why it is called persistent current.

Persistent current was predicted in the early days of quantum mechanics by Hund

[32] but their experimental relevance for mesoscopic systems has been recognized

only much later by Büttiker, Imry and Landauer in 1983 [14]. In their paper, they

suggested the existence of persistent current even in a phase coherent normal metal

closed loop (e.g., ring) in the presence of Aharonov - Bohm flux φ. The persistent

Figure 3.2: An ideal one dimensional ring of circumference L pierced by magnetic
flux φ

current is given by the flux derivative of the free energy of the ring. These currents

are the consequences of the sensitivity of the eigen-states to the boundary condition.

Due to the enclosed magnetic field, the time reversal symmetry in the ring system

is broken. As a consequence, the degeneracy between the states carrying current
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clockwise and anti-clockwise directions is lifted. The persistent current is periodic

in flux with periodicity φ0, φ0 = hc/e being the flux quantum. At temperature

T = 0 the amplitude of the persistent current is given by eυF/L, where υF is the

Fermi velocity and L is the circumference of the ring described in Fig. 3.2. For spin-

less electrons the persistent current is diamagnetic or paramagnetic depending upon

whether the number of electrons are odd or even, respectively. Later experiments

in diffusive as well as ballistic normal and semi-conducting rings [35, 36, 37] showed

the existence of the persistent currents.

Persistent currents is one dimensional ring

In case of a one dimensional ballistic ring of length L, threaded by an AB flux [54],

the Hamiltonian is given by

H =
1

2m
(~p− e

c
~A)2 (3.18)

Thus the time independent Schrödinger equation is given by

~
2

2m
(−i ∂

∂x
− e

c

φ

L
)2Ψn = EnΨn (3.19)

where, Ψn, are the eigen functions and x is the coordinate along the ring. For

the ring geometry, we can apply periodic boundary conditions which lead to the

usual quantization of energy levels. The current carried by each eigenstate can

be calculated using the current operator. The total current is the sum over the

individual contributions from each state, weighted with the appropriate occupation

number. Following Byers and Yang [55] and Bloch [56], Cheung et al. [54] worked

in a gauge for the vector potential in which the field does not appear explicitly in

the Hamiltonian and the current operators, but enters the calculation via the flux

modified boundary conditions,

Ψ(L) = exp[
i2πφ

φ0

]Ψ(0)

dΨ

dx
(x = L) = exp[

i2πφ

φ0

]
dΨ

dx
(x = 0)

The boundary conditions imply that the eigenstates and energies and hence all

equilibrium physical properties of the ring are periodic in φ with period φ0. This is

true also in presence of disorder. A flux φ 6= φ0×integer is mathematically equivalent

to a change in the boundary conditions of the system. The corresponding eigen-

values of the ring are:

En =
~
2

2mL2
(n+ Φ)2 (3.20)
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Figure 3.3: Schematic diagram of the electron energy levels as a function of the
flux φ/φ0 in a one-dimensional ring with and without impurities (solid and dashed
curves respectively). Figure is taken from [54].

wherein n takes values 0,±1,±2, .... Eq. (3.20) represents the eigen energy spectra

(with Φ = φ/φ0, and φ0 is the flux quantum) of a closed normal metal ring [54].

Schematic digram of the electron energy levels of a closed normal metal ring as a

function of the flux φ/φ0 with and without impurities (disorder) is shown in Fig.

3.3. In the absence of impurity (disorder) in the ring, the curves form intersecting

parabolas. In the presence of impurity (disorder), gaps open at the points of inter-

section, in the same way as band gaps form in the band structured problem. Since

the band is symmetric in wave vector k for the one-dimensional lattice problem, the

eigenenergies of the closed ring are symmetric in the flux. Using simple tight bind-

ing model Cheung et al. [54] showed that for one dimensional ring the persistent

current decreases with the increase in impurity (disorder).

The charge current carried by the nth energy level is

In =
−e
2π~

∂En
∂Φ

(3.21)

The total current of the system is then given by summation over all the occupied

levels, which leads to

I =
∑

n

In = −2πe~

mL2
(n+

φ

φ0

) (3.22)

This persistent current (Eq. (3.22)) is obtained for dashed curves (without impuri-
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ties) in the energy spectrum Fig. 3.3. For solid curves, i.e., in presence of disorder,

the total current is given by

I =
e

~

sin2πφ
φ0

∂
∂E
Re(1/t)

(3.23)

where t is the transmission coefficient.

3.3 Summary

In this chapter, the detailed theoretical descriptions of Aharonov-Bohm effect have

been given for both open system as well as closed system. We have discussed the

basic elastic scattering problem of a one-dimensional ring pierced by a magnetic flux

through the centre and connected to two electron reservoirs via perfect leads in both

sides. We have solved the Schrödinger equation in detail for this system to get the

wavefunctions at different regions of Fig. 3.1. Applying boundary conditions at the

junctions J1 and J2 (where the ring and the leads meet) of the one-dimensional ring

we got reflection amplitudes, transmission amplitudes and amplitudes in the ring.

Then we have discussed one-dimensional closed ring pierced by magnetic flux at

the centre. Electrons here can support a current around the ring in thermodynamic

equilibrium, even at zero temperature which depends on the magnetic flux φ piercing

the ring and cannot decay dissipatively.

The current I in Eq. (3.23) is an equilibrium current quite unlike the current

dIin in Eq. (3.2) which is a transport current. Thus we see that in mesoscopic

physics both transport current and equilibrium thermodynamic current are deter-

mined by the transmission coefficient t. So there is no clear demarkation between

thermodynamic properties and linear transport properties. In fact we will show in

Chapter 6 how a transport current can generate a magnetization.



Chapter 4

QUANTUM CAPACITANCE: A

MICROSCOPIC DERIVATION

“We shall not cease from exploration.

And the end of all our exploring

Will be to arrive where we started

And know the place for the first time.”

–T. S. Eliot.

In this work we start from microscopic approach to many body physics and will

show the analytical steps required to arrive at the concept of quantum capacitance.

These approximations are valid only in the semi-classical limit and the quantum

capacitance in that case is determined by Lindhard function. The effective capaci-

tance is the geometrical capacitance and the quantum capacitance in series, and this

too is established starting from a microscopic theory. Our analysis is independent

of model and valid for any geometry in any dimension. However, we will use some

models and systems for numerical verification, that are described in Section 4.2.

Analytical derivation of quantum capacitance is given in section 4.3. Finally, this

chapter is concluded with the summary of results in section 4.4.

4.1 Introduction

Several new concepts and ideas have been developed in last few decades on nano-

electronics and they are often questioned [57]. AC response of quantum dots in the

coherent regime has been measured in recent experiments [58, 59, 60, 61, 62]. A good

understanding and control over such phenomenon can lead to many novel devices,

specially in metrology [58, 63]. The experimental results are analyzed in a series

49
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of works, using effective variables like quantum capacitance [63, 64, 65, 66, 67, 68].

Capacitance of mesoscopic systems are very different from geometric capacitance.

In mesoscopic systems one can differentiate between electrostatic capacitance and

electro-chemical capacitance. Although, in principle one can also define a magnetic

field induced capacitance, in practice one defines a field dependent electrostatic or

electro-chemical capacitance [69]. Ref. [70] gives a detailed analysis of electro-

chemical capacitance which gives corrections to the geometrical capacitance due to

field penetration into the conductor which occurs over a finite length scale compara-

ble to the dimensions of the sample and ignored in large systems. Electro-chemical

capacitance is a property of open systems (systems connected to leads and electron

reservoirs). In such open systems, electron-electron interaction cannot be treated

exactly and characteristic potentials were introduced to account for Coulomb inter-

action approximately. The correction term appear as another capacitance in series

with the geometric capacitance. Both, open and closed systems can have an electro-

static voltage induced capacitance. A closed system of a finite wire (referred as stub)

connected to a closed ring was analysed in Ref. [69]. The system was reduced to a

two level system, wherein there is a hybridization of a single level coming from the

ring. Coulomb interaction was again treated approximately with the help of char-

acteristic potentials and single particle level approximations. Quantum corrections

were again shown to appear as a capacitance that appear in series with the geomet-

ric capacitance. The quantum capacitance is given by the Lindhard function [69].

Subsequently, several authors have tried to interpret experimental data and numer-

ical calculations in terms of quantum capacitance [71, 72]. A microscopic analysis

stating under what circumstances and assumptions one can use such a parameter is

not done so far.

Capacitance of a system is self consistently determined by Coulomb interactions

and this is no exceptions for quantum capacitance as well. However, quantum me-

chanically electrons can also interact via Fermi statistics and so even when Coulomb

interaction is ignored, a system can have a quantum capacitance. While geometric

or classical capacitance is determined by the volume, shape and dielectric constant

of the system, charge in quantum mechanics can reside in orbitals that do not have

a space-time description. The existence of an effective variable of quantum capaci-

tance, can simplify the complexity of many body physics.

Unlike that in open systems, electron-electron interaction and statistics can be

treated exactly in closed systems. In this work we deal with closed systems so that

an analytical proof can be given and exact numerical diagonalization is possible

for verification. We would like to analyze the assumptions and concepts required

to arrive at a statistical mechanical variable of electrostatic quantum capacitance.

When a system is weakly coupled to a reservoir, making it an open system, one can

describe the system in terms of the eigen energies of the systems and Fermi-Dirac
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distribution function [73]. So our results are also valid for weakly coupled open sys-

tems. Electro-chemical potential also works by affecting the electrostatic potential

inside the system [70]. So if electrostatic quantum capacitance cannot be proved

then electro-chemical quantum capacitance may also not hold.

4.2 Model for Numerical Verification and Illus-

tration

We have given in Fig. 4.1, schematic diagrams of a ring (Fig. 4.1(a)), a stub

connected to a ring (Fig. 4.1(b)), and a 2D square geometry (Fig. 4.1(c)). Although

our analysis is not restricted to these geometries, we will use them as reference and

examples. Figs. 4.1 (a), 4.1 (b) and 4.1 (c) represent continuum cases whereas Figs.

4.1 (d), 4.1 (e) and 4.1 (f) represent discrete versions of the same systems as that

in 4.1 (a), 4.1 (b) and 4.1 (c), respectively. Discrete models are useful for numerical

analysis. The vector potential due to a magnetic field can non-trivially change the

electronic state of a system (due to quantum interference) while having very little

effect on the bound positive charges that can be assumed to be uniform [69]. It

is very easy to see polarization due to vector potential in rings as the magnetic

field can remain confined to the center of the ring while the electrons in the ring

feel only the vector potential. However, it also occurs in small two dimensional

or three dimensional quantum systems where weak magnetic fields have negligible

effect (Lorentz’s force being weighted down by the velocity of light), but vector

potential will drastically change the state of the system due to interference effects.

For numerical verification, we use the generalized Hubbard Hamiltonian describing

a discrete system consisting of sites.

H =
∑

i,σ

ǫiC
†
i,σCi,σ +

∑

<ij>,σ

tC†i,σCj,σ +
∑

i

U1ni,↑ni,↓

+
∑

<ij>,σ,σ′

U2ni,σnj,σ′ (4.1)

where ǫi is the site energy of the ith site. t is the hopping parameter (in the

presence of magnetic field it becomes complex, i.e., t → texp[iφ/Nφ0]). U1 and U2

are respectively, the on site and nearest neighbor Coulomb interaction.

In Fig. 4.2, we show a three dimensional ring (shaded region) with a flux φ

through the center of the ring that can cause polarization. At a particular point r

on the ring we can bring an STM tip at a voltage V to cause further polarization

at the position r (or i) while another STM tip can measure the local potential V (r)
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Figure 4.1: Schematic diagrams of some mesoscopic geometries used in this work
as examples and also for numerical verifications. (a) represents a one-dimensional
ring pierced by a magnetic flux φ. (b) represents a one-dimensional ring to which a
quantum wire or stub is attached. The ring is again pierced by a magnetic flux φ.
(c) represents a two dimensional square geometry. Once again a magnetic field can
be applied perpendicular to the plane of the geometry. (d-f) is the discrete versions
of those in (a), (b) and (c), respectively, that can be described by a generalized
Hubbard Hamiltonian and useful for numerical verifications. The dot represents
sites. Nearest neighbour sites are marked i and j.

or (Vi) at r or i. The polarization charge in a segment of the ring can be measured

by a cylinder around the ring by looking at the induced charge on this cylinder

(unshaded contour in Fig. 4.2).

4.3 Analytical Derivation

We will outline here all the mathematical steps required to describe the polariza-

tion of a quantum system in terms of electrostatic quantum capacitance. When

assumptions are used, we will give numerical verification and also cite appropri-

ate earlier works. Suppose that the potential V (r) at a point r is changed in-

finitesimally giving rise to a delta potential term in the Hamiltonian, of the form

dV ext(r) =
∑

n κδ(r − rn). Where rn is the coordinate of the nth electron. The

Kohn-Hohenberg theorem [74] states that the energy is an unique perturbation cor-
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Figure 4.2: A three-dimensional mesoscopic ring pierced by a magnetic flux φ. The
flux can polarize the ring. The ring can also be polarized by a voltage probe (without
making a contact) at site r at a given voltage V . Another voltage probe (without
making contact) whose voltage is allowed to vary can measure the voltage at the
site r. A solenoid around the ring, as shown in the figure, can measure the induced
charge in a segment of the ring due to polarization. The idea of quantum capacitance
is valid only when the polarized charge is uniformly distributed in the rest of the
ring, apart from the region at r.

rection to the energy which is in terms of the applied potential only and no self

consistency is required. So the increase in energy of the system can be expanded as

∆E =
∑

n

∫

d3r1d
3r2...d

3rMψ
∗(r1, r2, ..., rM )κδ(r − rn)

ψ(r1, r2, ...., rN ) +O(κ2) +O(κ3) + .... (4.2)

As κ→ 0, then
∂E

∂V (r)
= Q(r) (4.3)

where

Q(r) =M

∫

d3r2...d
3rMψ

∗(r, r2, ..., rM )ψ(r, r2, ...., rM ) (4.4)

is the charge at r. We verify this numerically for all the geometries shown in Fig.

4.1. A plot is shown in Fig. 4.3 for a disordered ring whose site energies ǫi vary

from −0.5t to 0.5t. Other parameters are explained in figure caption. We have



54 Quantum capacitance: A microscopic derivation

used a single disorder configuration as the agreement is equally same for all other

configurations. The figure shows the correctness of Eq. (4.3). We stress that we use

exact diagonalization using Lanczos algorithm to determine E and Qi and hence

this is a numerical verification of Eq. (4.3).

Figure 4.3: The figure shows that for the geometries shown in Fig. 4.1, the Kohn-
Hohenberg theorem is valid. In this figure we have used only Fig. 4.1 (d). It consists
of 11 sites (N = 11), with 4 spin up electrons and 4 spin down electrons. The on-site
Hubbard U1 = 2, the nearest neighbour Hubbard U2 = 1. The hopping parameter
t = 1. The solid line is the charge on the 6th site as a function of the flux in units
of Q0 which is just electronic charge taken to be 1. The dashed line is ∂E

∂V6
in units

of Z0 = electronic charge taken as 1. E is the ground state eigen-energy of the
many body system found by exact diagonalization using Lanczos algorithm. The
dimension of the matrix being of the order 105X105. Here φ0 = hc/e.

Therefore, we can define a Lindhard function η(r).

η(r) = −∂Q(r)
∂V (r)

= − ∂2E

∂V (r)2
(4.5)

The last step follows from Eq. (4.3). For the geometry in Fig. 4.1 (a) or 4.1 (b) or
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4.1 (d) or 4.1 (e), we can change the magnetic flux φ through the center. This will

immediately cause a redistribution of electronic charge in every site of the system.

This is shown in Fig. 4.4 for the site numbered 8 in a 11 site ring. There is no

qualitative difference between Fig. 4.1 (d) and 4.1 (e) even when the stub is weakly

coupled to the ring. Also consider a case when an external voltage dV ext
i is applied at

Figure 4.4: The figure shows that a mesoscopic ring can be polarized by an
Aharonov-Bohm flux alone. We have used the geometry of Fig 4.1 (d) here. The
graphs for other geometries is qualitatively similar and so not shown here. Q8 is the
charge density at the 8th site, in units of Q0 which is electronic charge. At zero flux
we expect the system to be neutral. As the flux changes, strong dispersion of Q8

suggests polarization of the system wherein the positive charge in the system can
be taken to be uniform and independent of flux. Here φ0 = hc/e.

site i (in the discrete model one can change ǫi infinitesimally as Vi and ǫi are linearly

related). Obviously, one can change both, φ and V ext
i simultaneously. Charge at site

i, Qi will change. Due to electron-electron interaction the local potential, that is Vi,

will change. Such a potential change will in turn have a feedback effect on charge

displacement to determine dVi. This feedback effect is a purely quantum effect as

this feedback occurs because the initial charge displacement (in this case induced
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by externally changed flux or potential) can change the quantum states or eigen-

energies of the system. The externally applied flux and potential also work indirectly

by affecting the quantum states of the system. In other words external changes give

rise to electron displacements for which potential at site i (or j), change, and this in

turn gives rise to further charge displacements that is self consistently determined

by Coulomb interactions and Fermi statistics. dVi (or dVj) is this self consistently

determined increment in potential at site i (or site j). We can begin by writing for

the discrete system

dQi =
∂Qi

∂φ
dφ+

∂Qi

∂Vi
dVi + Σj 6=i

∂Qi

∂Vj
dVj (4.6)

Although Qi is a functional of Vi, one can change the potential infinitesimally at a

particular point without changing the potential at any other point to define a partial

derivative and this is in fact done to arrive at the concept of functional derivative

[75]. Not to mention that in the standard definition for total derivatives, ∂Qi

∂Vi
is

changed in Qi due to an infinitesimal test change in Vi (i.e., V
ext
i ), but dQi on the

LHS and dVi and dVj on the RHS are actual changes which in these systems are

determined self consistently. By the virtue of the fact that we are considering a sum

over j makes our treatment valid for any geometry and any dimension, where the

sum over j will run over all the sites making the system. For the continuous system

Eq. (4.6) becomes

dQ(r) =
∂Q(r)

∂φ
dφ+

∂Q(r)

∂V (r)
dV (r) +

∫

r′ 6=r

∂Q(r)

∂V (r′)
dV (r′)d3r′ (4.7)

Here partial derivatives with respect to V (r) means we are changing the potential in

the region r to r+ dr infinitesimally [75]. In the following we will argue analytically

and numerically that

−Σj 6=i
∂Qi

∂Vj
≈ −Σj 6=i

δQi

δVj
(4.8)

Or by replacing the sum by integration,

∫

r′ 6=r

∂

∂V (r′)
d3r′ ≈

∫

r′ 6=r

δ

δV (r′)
d3r′ (4.9)

While LHS is a sum of partial derivatives, the RHS is a functional derivatives.

Integration or sum of all (but one point) partial derivatives on LHS is approximately

a total derivative. Had this one point (r = r′) been included it would have been an

exact total derivative with respect to energy (electronic charge times potential being

energy) [76]. So in the above approximation an energy derivative is being replaced

by a functional derivative with respect to local potential. This approximation is



Quantum capacitance: A microscopic derivation 57

known in other context like deriving the semi-classical limit of Friedel sum rule [76].

That means this approximation is valid in the semi-classical regime. Numerical

verification of the approximate equality in Eq. (4.8) above is shown in Fig. 4.5. By

doing exact numerical diagonalization it is difficult to go to a truly semi-classical

limit of Friedel sum rule [76]. If this approximation holds then one can relate

induced voltage and polarization charge through quantum capacitance as shown

below. Therefore, from Eqs. (4.6) and (4.8),

dQi ≈
∂Qi

∂φ
dφ+

∂Qi

∂Vi
dVi +

∑

j 6=i

δQi

δVj
dVj (4.10)

Similarly, from Eqs. (4.7) and (4.9),

dQ(r) ≈ ∂Q(r)

∂φ
dφ+

∂Q(r)

∂V (r)
dV (r) +

∫

r′ 6=r

δQ(r)

δV (r′)
dV (r′)d3r′ (4.11)

We have to assume that dVj is independent of j as further explained below. Now it

follows from charge conservation that

−η =
∂Qi

∂Vi
= −

∑

j 6=i

δQi

δVj
(4.12)

The RHS is the net change in Qi due to an infinitesimal functional increase (or de-

crease) in the potential at all points except at i. That is equivalent to not changing

the potential anywhere but decreasing (or increasing) the potential at i infinitesi-

mally. Due to charge conservation the change in charge at i will be the same in both

cases. Coulomb repulsion tends to distribute charge uniformly in a system. On the

other hand quantum interference effect tends to give rise to un-even distribution of

charge. Assuming that in the semi-classical regime, Coulomb interaction dominate

over quantum interference effects and distribute the charge uniformly, dVj becomes

independent of j and we denote it as dVrest. Numerical calculations for small size

quantum systems show that for an wide range of parameter space the charge distri-

bution is uniform [77, 78]. Only in very low density regime, quantum interference

effects dominate and the charge density breaks up into crests and troughs [77, 78].

Any measurement process may not be able to resolve these crests and troughs and

may show an average value for the local potential implying dVj can be taken to be

independent of j. Transverse variation can be mapped to an effective variation in

the longitudinal direction [79, 80]. So one can write to a linear order,

dQi = C(dVi − dVrest) (4.13)

where C is the definition of geometric or classical capacitance. We know that when
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Figure 4.5: Here we are considering a ring in the semi classical limit. That is
the potential in the ring varies very slowly compared to de-Broglie wavelength. In
particular we have taken a 11 site ring with a single defect, ǫ1 = 0.3 and rest of the
site energies are 0. The solid line is ∂Q1

∂V1
and the dashed line is -

∑

j 6=1
∂Q1

∂Vj
. Both

quantities are in units of electronic charge taken as 1. Here U1 = 2 and U2 = 1 with
4 spin up and 4 spin down electrons in the ring. Here φ0 = hc/e.

we ignore quantum interference effects (i.e., large systems without boundary and

impurity effects averaged out or treated in random phase approximation) we can

always get such a linear regime. Substituting Eqs. (4.12) and (4.13) in Eq. (4.10)

and simplifying one gets that

C(dVi− dVrest) =
∂Qi

∂φ
dφ+

∂Qi

∂Vi
dVi+

∑

j 6=i

δQi

δVj
dVj =

∂Qi

∂φ
dφ− ηdVi+ ηdVrest (4.14)

(C + η)
d(Vi − Vrest)

dφ
=
∂Qi

∂φ
=

∂Qi

∂Vrest

∂Vrest
∂φ

(4.15)

Now since Vrest can be changed by changing Vi or φ, one can write Vrest(φ, Vi).



Quantum capacitance: A microscopic derivation 59

Therefore,

dVrest =
∂Vrest
∂φ

dφ+
∂Vrest
∂Vi

dVi (4.16)

Since, the region indexed i is very small compared to the rest of the system,

∂Vrest
∂Vi

→ 0.

Therefore,
dVrest
dφ

=
∂Vrest
∂φ

(4.17)

From Eq. (4.15) it follows that

(C + η)
(dVi − dVrest)

dφ
= η

∂Vrest
∂φ

= η
dVrest
dφ

(4.18)

Multiplying both sides of the above equation by C we get,

C
(dVi − dVrest)

dφ
=

Cη

(C + η)

dVrest
dφ

(4.19)

or on using Eq. (4.13)

dQi =
Cη

(C + η)
dVrest

or

dQi = −dQrest = CeffdVrest

where, Ceff =
Cη

(C+η)
. That is

1

Ceff
=

1

C
+

1

η
(4.20)

When we define capacitance we do not consider the sign of the charge. Normally

one plate of the capacitor has charge +Q and the other has charge −Q, wherein we

write Q = CV . Hence if we want to include quantum effects then only in the semi-

classical regime we find it possible to describe polarization in terms of capacitance.

A quantum capacitor of capacitance η in series with the classical capacitance de-

termines the effective capacitance of the system. The characteristic potential (or

the potential difference between two parts of the ring) is determined by this ef-

fective variable. The AC response of the ring is also determined by this effective

variable along with the inductance. For a purely capacitive response, I(t) = dQi/dt

or dIω = −iωCeffdVω [69]. Such an effective variable will exist only if assumptions

given in Eqs. (4.3), (4.8), and (4.17) are valid. Although quantum capacitance was

introduced first by Serge Luryi [81], he introduced it on very general grounds and

the above relation was not obtained. The above relation was obtained only in the

frame work of single particle two level system [69]. We have derived it generally for
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any arbitrary system including many body effects and outlined the assumptions and

regime in which such an effective variable will exist.

Figure 4.6: The figure shows a plot of η8 = ∂Q8/∂V8 as a function of flux. Here
η08 = e/t where e is electronic charge. φ0 = hc/e. This is for an eleven site disordered
ring with site energies varying from −.5t to +.5t. In this case U1 = 0 and U2 = 0.
Here φ0 = hc/e.

In Figs. 4.6 and 4.7 we have made a comparison of quantum capacitance at site

8, i.e., η8 in the non-interacting system and the interacting system to show that η is

a good parameter to effectively capture the effect of electron-electron interactions.

Here again we are considering the 11 site disordered ring considered in Figs. 4.3

and 4.4. We have applied a small external potential at the 8th site to evaluate

∂Q8/∂V8 = η8. Fig. 4.6 is for the non-interacting case i.e., U1 = 0 and U2 = 0

although the electrons still interact through Fermi statistics. In Fig. 4.7 we have

made U1 = 2 with all other parameters remaining the same. There is a large

qualitative as well as quantitative difference between the two figures which shows

the importance of including Coulomb interaction and many body effects in defining

capacitance. dQi = −dQrest can be measured as outlined in Fig. 4.2. ∂Qi/∂Vi =

−η can also be measured as outlined in Fig. 4.2. Geometrical capacitance C is
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Figure 4.7: The figure shows a plot of η8 = ∂Q8/∂V8 as a function of flux. Here
η08 = e/t where e is electronic charge. φ0 = hc/e. This is for an eleven site disordered
ring with site energies varying from −.5t to +.5t. In this case U1 = 2 and U2 = 0.
Here φ0 = hc/e.

independent of finite size or quantum interference effects and is known for an given

sample from its bulk properties. So one can determine Ceff . Thus dVi and drest can

be known for any applied external potentials as Ceff is the single parameter that

determine this.

4.4 Conclusion

In the semi-classical regime we prove polarization charge and induced potential of

a mesoscopic isolated sample are related by an effective capacitance Ceff . Effective

capacitance can be decoupled as a linear combination of classical capacitance and

quantum capacitance. The quantum capacitance is given by the Lindhard function.

In this regime, we can design quantum circuits in terms of this parameter Ceff just

as classical circuits are built in terms of parameters like resistance, capacitance and

inductance. While in earlier works, Eq. (4.20) was derived for single particle theory

for a two level system, we have started from the principles of many body physics and
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derived Eq. (4.20) for any arbitrary geometry in any dimension. We have shown the

approximations necessary to get this in the framework of fully interacting fermions

that can be described by Density Functional theory or Hartree-Fock theory. All

these approximations are justified in the semi-classical limit. So Eq. (4.20) can

provide a simple way to understand DC and AC response of quantum finite sized

many body electronic systems in the semi-classical limit, in terms of an effective

variable.



Chapter 5

STABLE SWITCH ACTION

BASED ON QUANTUM

INTERFERENCE EFFECT

“Frequently, I have been asked if an experiment I have planned

is pure or applied science, to me it is more important to know if the

experiment will yield new and probably enduring knowledge about nature. If it

is likely to yield such knowledge, it is in my opinion good fundamental research;

and this is more important than whether the motivation is purely aesthetic

satisfaction on the part of the experimenter on the one hand or the

improvement of the stability of a high power transistor on the other.”

–William B. Shockley.

Although devices working on quantum principles can revolutionize the electronic

industry, they have not been achieved yet as it is difficult to control their stability,

which supports Landauer’s claim that devices based on quantum interference princi-

ples cannot be achieved. In this chapter we consider a multichannel Aharonov-Bohm

interferometer connected to two reservoirs of different chemical potentials to under-

stand the quantum interference effect. In Section 5.1, we have mentioned earlier

experimental as well as theoretical works as a motivation to study multichannels

junctions which is very difficult to account for theoretically. In Section 5.2, we have

described our model for calculation, shown theoretical analysis for a multichannel

Aharonov-Bohm ring including channel mixing and evanescent modes. We have

proposed a new S matrix for multichannel junctions to solve the scattering prob-

lem. In Section 5.3, using Landauer’s formula we have calculated the conductance

and discussed that the operational characteristics of a quantum switch can be made

independent of impurity configuration, temperature, Fermi energy etc. This chapter

63
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is concluded with a summery of results discussed in Section 5.4.

5.1 Introduction

Advances in electron beam lithography within the last few years have made it pos-

sible to fabricate nano sized or mesoscopic artificial structures with good control

over design parameters and probe the quantum transport properties [6]. These

include very narrow quasi one-dimensional quantum wires, zero-dimensional elec-

tron systems or quantum dots, rings, etc., constructed at a semiconductor interface.

Typical sizes of these systems vary between 1 to 10 µm. At very low temperatures

(typically mK), the scattering by phonons is significantly suppressed, and the phase

coherence length can become large compared to the system size. In this regime the

electron maintains the single particle phase coherence across the entire sample. The

sample becomes an electron waveguide where the transport properties are solely de-

termined by the impurity configuration and the geometry of the conductor and by

the principles of quantum mechanics [6].

Such advances in mesoscopic structures have led to the possibility of new quan-

tum semiconductor devices. These active quantum devices rely on quantum effects

for their operation based on interferometric principles, and are quantum analog of

well-known optical and microwave devices [6]. The mechanism of switch action

by quantum interference is a new idea in electronic application. Several potential

switching devices have been proposed, wherein one controls the relative phase differ-

ence between different interfering paths (say, in semiconducting loop structures) by

applying electrostatic or magnetic fields [82, 83, 84, 85]. The possibility of achiev-

ing transistor action in T-shaped structure by varying the effective length of the

vertical open ended lead has also been explored [86, 87]. Devices in which elec-

trons carry current without being scattered either elastically or inelastically (bal-

listic devices) promise to be much faster and will consume less power than the

conventional devices. It should also be noted that quantum devices can exhibit

multifunctional property (e.g., single stage frequency multiplier) wherein the func-

tions of an entire circuit within a single element can be performed [88]. They can

also lead to tremendous down sizing of electronic devices. The conventional transis-

tors operate in a classical diffusive regime and are not very sensitive to variations

in material parameters such as dimensions or the presence of small impurities or

non-uniformity in size and shape. These devices operate by controlling the carrier

density of quasi-particles. However, proposed quantum devices are not very robust

in the sense that the operational characteristics depend very sensitively on material

parameters, impurity configuration, shape and size, temperature and Fermi energy

[89]. For example, incorporation of a single impurity in the mesoscopic device can

change, non-trivially, the interference of partial electron waves propagating through
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the sample, and hence the electron transmission (operational characteristics) across

the sample [90]. In such devices the actual problem of control and reproducibility

of operating thresholds becomes highly nontrivial. These devices can be exploited

if we achieve the technology that can reduce or control the phase fluctuations to a

small fraction of 2π [91]. A lot of work has been done in one dimensional quantum

rings [91, 92, 93, 94, 95, 96, 97, 98, 99, 100]. However, the experimental rings are

always in two dimension or in three dimension. Such systems have not received any

theoretical attention because multichannel junctions are very difficult to account for

theoretically. Earlier models either do not account for channel mixing or do not

allow the inclusion of evanescent modes.

5.2 Theoretical Analysis

Fig. 5.1 represents the schematic diagram of a finite thickness mesoscopic quantum

ring under consideration. It is made up of normal metal or semiconductor and

electronic transport in such systems can be well described by an effective mass

theory [6]. Incident electrons coming from the source reservoir on the left (say), gets

scattered by the ring. Division of wave front occurs at junction J1; a partial wave

propagates along the upper arm of the ring and another partial wave propagates

along the lower arm of the ring. These two partial waves recombine and give a

transmittance that bears the signature of interference between the two partial waves

along the two arms of the ring. This interference can be modified by an Aharonov

- Bohm flux through the center of the ring. The description of the figure is given in

further detail in the figure caption.

The Schrödinger equation for a quasi one dimensional wire is (the third degree

of freedom, i.e., z-direction, is usually frozen by creating a strong quantization [6])

− ~
2

2m∗
(
∂2ψ

∂x2
+
∂2ψ

∂y2
) + V (x, y)ψ(x, y) = Eψ(x, y) (5.1)

Here the x coordinate is along the wire, y coordinate is perpendicular to it, m∗ is

the electron effective mass and E is the electron energy. In regions I and IV (see

Fig. 5.1) we have only the confinement potential. That is

V (x, y) = V (y).

Whereas in regions II and III apart from the confinement potential we take a constant

potential V0 that can be used to excite evanescent modes inside the ring. That is

V (x, y) = V (y) + V0.
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Figure 5.1: A finite thickness quantum ring of width a made up of normal metal
or semiconductor is indicated by the red region. On either sides the quantum ring
is attached with quantum wires made up of normal metal or semiconductor. It is
indicated by the striped regions. On the left of the above system there is the source
reservoir with chemical potential µ1 and on the right there is the drain reservoir
with chemical potential µ2. A potential difference (µ1 − µ2) between the source
reservoir and the drain reservoir drives a transport current. The wave functions
of the electron in different regions is shown in the figure at their respective places.
Different regions are marked as I, II, III and IV. The ring is pierced by an Aharonov
- Bohm flux φ. α is the Aharonov-Bohm phase an electron picks up in region II and
β is that in region III. J1 is the junction where the regions I, II and III meet and
J2 is the junction where the regions II, III and IV meet.

Without any loss of generality we take V (y) to be an infinite square well potential

of width a. That is

V (y) = 0 for− a/2 ≤ y ≤ a/2

and

V (y) = ∞ for|y| > a/2 (5.2)

The wave functions in the ring can be obtained by solving Eq. (5.1) where we assume

the ring to be so large compared to the de Broglie wave length that its curvature
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can be neglected [101]. The length of the ring is L = l1 + l2, where l1 is the length

of the upper arm and l2 is the length of the lower arm. The magnetic field appears

just as a phase of ψ(x, y) and will be accounted for while applying the boundary

conditions [54]. In regions I and IV Eq. (5.1) can be separated as

ψ(x, y) = φ(x)ξ(y) (5.3)

to give

− ~
2

2m∗
∂2φ(x)

∂x2
=

~
2k2

2m∗
φ(x) (5.4)

and

− ~
2

2m∗
∂2ξ(y)

∂y2
+ V (y)ξ(y) = εξ(y) (5.5)

Since V (y) is a square well potential of width a, Eq. (5.5) gives

ξn(y) = sin
nπ

a
(
a

2
+ y) (5.6)

and

εn =
n2π2

~
2

2m∗a2
(5.7)

Eq. (5.4) has solution of the form

φn(x) = e±iknx

with

kn =

√

2m∗E

~2
− n2π2

a2
(5.8)

or

E = εn +
~
2k2n
2m∗

(5.9)

So wave functions in regions I and IV can be written as

ψI
(1) = (

eik1x√
k1

+
r′11e

−ik1x
√
k1

) sin
π

a
(y +

a

2
) (5.10)

ψI
(2) = (

r′12e
−ik2x

√
k2

) sin
2π

a
(y +

a

2
) (5.11)

ψIV
(1) = (

t′11e
ik1x

√
k1

) sin
π

a
(y +

a

2
) (5.12)

ψIV
(2) = (

t′12e
ik2x

√
k2

) sin
2π

a
(y +

a

2
) (5.13)

ψI
(1) is the wave function of region I in channel n = 1 and so on. From Eq. (5.8),
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in the first mode

k1 =

√

2m∗E

~2
− π2

a2
(5.14)

is the propagating wave vector and in the second mode

k2 =

√

2m∗E

~2
− 4π2

a2
(5.15)

is the propagating wave vector. For

4π2

a2
< E <

9π2

a2
(5.16)

both k1 and k2 are real as can be seen from Eq. (5.14) and Eq. (5.15). kn for

n > 2 are imaginary as can be seen from Eq. (5.8) implying that there are two

propagating channels. In the leads we can not have evanescent modes [24, 27]. Now

for the regions II and III the potential is V (x, y) = V (y) + V0. Wave functions in

these regions can be similarly written as

ψII
(1) = (

A1e
iq1x

√
q
1

+
B1e

−iq1x
√
q
1

) sin
π

a
(y +

a

2
) (5.17)

ψII
(2) = (

A2e
iq2x

√
q
2

+
B2e

−iq2x
√
q
2

) sin
2π

a
(y +

a

2
) (5.18)

ψIII
(1) = (

C1e
iq1x

√
q
1

+
D1e

−iq1x
√
q
1

) sin
π

a
(y +

a

2
) (5.19)

ψIII
(2) = (

C2e
iq2x

√
q
2

+
D2e

−iq2x
√
q
2

) sin
2π

a
(y +

a

2
) (5.20)

In these regions the energy can be similarly written as

E − V0 =
~
2q2n
2m∗

+
n2π2

~
2

2m∗a2

or

qn =

√

2m∗(E − V0)

~2
− n2π2

a2

Hence, in the first mode

q1 =

√

2m∗(E − V0)

~2
− π2

a2
(5.21)
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is the wave vector and in the second mode

q2 =

√

2m∗(E − V0)

~2
− 4π2

a2
(5.22)

is the wave vector. Depending on the choice of energy E and potential V0, q1 and

q2 can be real (propagating mode) as well as imaginary (evanescent mode). Such

evanescent states can always be excited in the internal regions of the system but not

in leads [24, 27].

Note that a two dimensional quantum wire can be also converted into a Aharonov-

Bohm set up as shown in Fig. 5.2. Essentially one can form a cylinder that can

enclose a flux [102]. In this case all the analysis given above remains the same. For

Figure 5.2: Cylindrical Aharonov-Bohm set up

example if now we choose cylindrical coordinates the wave function in Eq. (5.17)

becomes

ψII
(1) = (

A1e
im1θ

√
m1

+
B1e

−im1θ

√
m1

) sin
π

a
(z +

a

2
) (5.23)

In fact this makes analysis much simpler because m1 stands for angular momentum

and takes into account the curvature of the ring. The boundary conditions Eq.

(5.29) to Eq. (5.40) (shown later) remain unchanged because replacing k1 by m1 or

x by θ or y by z do not affect boundary conditions. Advantage with this set up is

that one can make width of the ring a much larger than the length of the ring L.

S - matrix for the Junction
Earlier works have proposed junction S matrix for solving the scattering problem

of a ring [92, 93, 94, 95, 96, 97, 98, 99, 73, 103] where the following conditions [104]
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are satisfied at the junction:

(a) conservation of current,

(b) continuity of wave function and

(c) unitarity of S matrix.

However, earlier models do not account for channel mixing and also do not allow us

to include evanescent modes. We give below a simple way to obtain an S matrix for

a 3 legged two channel junction shown in Fig. 5.3, that satisfy the three conditions

stated above. For our junction S matrix channel mixing occurs and evanescent

modes can also be accounted for. The approach can be generalized to any numbers

of channels. For details of the S-matrix elements for a multi-channel scattering

problem see Ref. [105]. Note that the different elements of the S-matrix contain

informations about the propagating modes as well as the evanescent modes arising

out of transverse confinement [105].

Fig. 5.3 represents schematic diagram of a three-legged scatterer that we find

at J1 or J2 of Fig. 5.1. All the legs or leads are made up of normal metal or

semiconductor. Incident electrons coming from the left of the lead labeled I, gets

scattered at the junction where the three leads meet. Division of wave front occurs

and partial waves propagate along the upper arm labeled II and along the lower arm

labeled III. The wave functions of the electron in different regions are again obtained

from Eq. (5.1) and shown in their respective places for two propagating channels in

each lead. Potential in region I (stripped region) is zero whereas potential in regions

II and III (red colored region) is V0. Taking the clue from reflection and transmission

Figure 5.3: A three-legged two-channel junction that exists at J1 and J2 of Fig. 5.1.
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amplitudes for a one dimensional step potential [106] we can write for the different

reflection amplitudes rmn and transmission amplitudes fmn and gmn shown in Fig.

5.3 as

r11 = (
k1 − k2 − 2q1 − 2q2
k1 + k2 + 2q1 + 2q2

)

r12 = (
2
√
k1k2

k1 + k2 + 2q1 + 2q2
)

f11 = g11 = (
2
√
k1q1

k1 + k2 + 2q1 + 2q2
)

f12 = g12 = (
2
√
k1q2

k1 + k2 + 2q1 + 2q2
)

r22 = (
k2 − k1 − 2q1 − 2q2
k1 + k2 + 2q1 + 2q2

)

r21 = (
2
√
k1k2

k1 + k2 + 2q1 + 2q2
)

f21 = g21 = (
2
√
k2q1

k1 + k2 + 2q1 + 2q2
)

f22 = g22 = (
2
√
k2q2

k1 + k2 + 2q1 + 2q2
)

S matrix for the junction Sj is therefore

Sj =























r11 r12 f11 f12 g11 g12

r21 r22 f21 f22 g21 g22

f11 f12 r11 r12 g11 g12

f21 f22 r21 r22 g21 g22

g11 g12 g11 g12 r11 r12

g21 g22 g21 g22 r21 r22























(5.24)

One can check that the following conditions of unitarity are satisfied

|r11|2 + |r12|2 + |f11|2 + |f12|2 + |g11|2 + |g12|2 = 1 (5.25)

|r22|2 + |r21|2 + |f21|2 + |f22|2 + |g21|2 + |g22|2 = 1 (5.26)

Given an S matrix one can always solve the inverse scattering problem and find for

what potential at the junction or for what angle of connecting the three legs of the

junction one gets this S matrix. However, that would not be a relevant exercise.

The ring wave functions and the lead wave functions at the junction J1 of Fig. 5.1
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can be matched as
























r′11√
k1
r′12√
k2
A1√
q1
A2√
q2

D1e−iq1l2√
q1

D2e−iq2l2√
q2

























= Sj

























1√
k1

0
B1e−iα
√
q1

B2e−iα
√
q2

C1eiq1l2+iβ
√
q1

C2eiq2l2+iβ
√
q2

























(5.27)

and that at the junction J2 of the Fig. 5.1 can be matched as

























B1e−iq1l1√
q1

B2e−iq2l1√
q2
C1√
q1
C2√
q2
t′11√
k1
t′12√
k2

























= Sj

























A1eiq1l1+iα
√
q1

A2eiq2l1+iα
√
q2

D1e−iβ
√
q1

D2e−iβ
√
q2

0

0

























(5.28)

One can match the wavefunctions at the junction J2 to give a set of equations given

below

1 + r′11 −
√

k1
q1
A1 −

√

k1
q1
B1e

−iα = 0 (5.29)

r′12 −
√

k2
q2
A2 −

√

k2
q2
B2e

−iα = 0 (5.30)

1 + r′11 −
√

k1
k2
r′12 = 0 (5.31)

1 + r′11 −
√

k1
q1
C1e

iq1l2+iβ −
√

k1
q1
D1e

−iq1l2 = 0 (5.32)

r′12 −
√

k2
q2
C2e

iq2l2+iβ −
√

k2
q2
D2e

−iq2l2 = 0 (5.33)

ik1 − ik1r
′
11 − iq1

√

k1
q1
A1 + iq1

√

k1
q1
B1e

−iα − iq2

√

k1
q2
A2+

iq2

√

k1
q2
B2e

−iα − iq1

√

k1
q1
C1e

iq1l2+iβ − iq1

√

k1
q1
D1e

−iq1l2+

iq2

√

k1
q2
C2e

iq2l2+iβ − iq2

√

k1
q2
D2e

−iq2l2 − ik2

√

k1
k2
r′12 = 0 (5.34)
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t′11 −
√

k1
q1
A1e

iq1l1+iα −
√

k1
q1
B1e

−iq1l1 = 0 (5.35)

t′12 −
√

k2
q2
A2e

iq2l1+iα −
√

k2
q2
B2e

−iq2l1 = 0 (5.36)

t′11 −
√

k1
k2
t′12 = 0 (5.37)

t′11 −
√

k1
q1
C1 −

√

k1
q1
D1e

−iβ = 0 (5.38)

t′12 −
√

k2
q2
C2 −

√

k2
q2
D2e

−iβ = 0 (5.39)

iq1

√

k1
q1
A1e

iq1l1+iα − iq1

√

k1
q1
B1e

−iq1l1 + iq2

√

k1
q2
A2e

iq2l1+iα−

iq2

√

k1
q2
B2e

−iq2l1 − iq1

√

k1
q1
C1 + iq1

√

k1
q1
D1e

iβ − iq2

√

k1
q2
C2+

iq2

√

k1
q2
D2e

−iβ − ik1t
′
11 − ik2

√

k1
k2
t′12 = 0 (5.40)

Solving them we can find the S matrix elements r′11, r
′
12, t

′
11 and t

′
12 for the Aharonov

- Bohm ring. Similarly we can find r′22, r
′
21, t

′
22, and t

′
21.

5.3 Results and Discussions

Here we are considering two channel Aharonov-Bohm ring that are characterized by

four transmission amplitudes t′11 , t′12, t
′
21 and t′22 i and four reflection amplitudes

r′11, r
′
12, r

′
21 and r′22. Landauer’s formula gives the two probe conductance G as

G =
2e2

h

∑

i,j

|t′ij|2. (5.41)

The transmission amplitude from mode j to mode i is t′ij. G is a strongly oscillating

function of φ/φ0 implying we can use flux to drive the system from a conducting

state to an insulating state that can be identified with 1 and 0 of a switch as

will be exemplified. Such a switch will therefore be working entirely on quantum

mechanical principles. Such devices if achieved will be a major technological break

through. First of all, it will transcend Moore’s law [3, 4] by leaps and bounds to

result in extremely small devices. Secondly, such devices will consume very little
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power and will solve the problem of present day computers dissipating a lot of

energy and getting heated up. Other advantages are mentioned in Section 5.1.

However, such devices have not been achieved so far because switches based on

quantum interference principles as the one we are discussing here in our work are not

stable [89]. Small changes in temperature or incorporation of a single impurity can

drastically change the operational characteristics of the switch. One can understand

this in terms of the fact that impurity cause additional reflections or temperature

increases Fermi energy and hence wavelength and therefore imply changes in path

lengths in an interference set up. We demonstrate below how changes in path

lengths can drastically alter the operational characteristics of an Aharonov-Bohm

ring. Finally we will show that there is a solution to the problem.

Note, a periodic system can not have two minima and one maximum within

one period. In the following when we refer to it we mean two different kinds of

minima and only one kind of maximum. In Fig. 5.4, we show G
2e2/h

for a two
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Figure 5.4: The figure shows a plot of G
2e2/h

as a function of φ/φ0. Here φ0 = hc/e.

The incoming electrons have energy E = 55~2

m∗a2
and the constant potential V0 of the

ring is 0. We are considering in this case two propagating modes. The solid line
is

∑

i,j |t′ij|2 for l1/a = 5, l2/a = 5 and the dashed line is
∑

i,j |t′ij|2 for l1/a = 4,
l2/a = 6.

channel Aharonov-Bohm ring with l1/a = 5, l2/a = 5 (solid line) and with l1/a = 4,

l2/a = 6 (dashed line). We choose incident energy in the range given by Eq. (5.16)

and so we are considering a two channel scattering problem. We take the potential

inside the ring V0 to be 0 implying that both channels are propagating inside the
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ring. Solid line shows two conductance minima, one is shallow at flux φ/φ0 = 0

(approx) and another is deep at flux φ/φ0 = 3.1 (approx) and it also shows one

conductance maximum at flux φ/φ0 = 2.4 (approx). Dashed line also shows two

conductance minima, one is shallow at flux φ/φ0 = 0 (approx) and another is deep at

flux φ/φ0 = 3.1 (approx) and it shows one conductance maximum at flux φ/φ0 = 1.0

(approx). We can assign the conductance minimum as off state and conductance

maximum as on state of a switch. Fig. 5.4 shows that with changing the arm length

the minimum is not shifting but maximum is shifting a lot. The shallow minimum

for dashed line is so shallow that it may not be observed in measurement. Much

more non-systematic behavior will be shown in subsequent plots. Now we will plot

the individual |t′ij|2 s as a function of φ/φ0 and shown in Fig. 5.5. All the plots
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Figure 5.5: We use same parameters as in Fig. 5.4 and plot individual scattering
cross sections. (a) shows a plot of |t′11|2 as a function of φ/φ0. (b) shows a plot of
|t′12|2 as a function of φ/φ0. |t′21|2 as a function of φ/φ0 is identical to |t′12|2 as a
function of φ/φ0 due to Onsager reciprocality relation, so |t′21|2 is not shown. (c)
shows a plot of |t′22|2 as a function of φ/φ0. Here φ0 = hc/e. The solid lines are for
l1/a = 5, l2/a = 5 and the dashed lines are for l1/a = 4, l2/a = 6.

of individual partial scattering cross sections (|t′11|2, |t′12|2 = |t′21|2 and |t′22|2) are

qualitatively same as the plot of
∑

i,j |t′ij|2 as a function of φ/φ0. Peaks are expected

to occur at resonance [107] when integral wave numbers fit into the total length of the

Aharonov-Bohm ring. However in presence of channel mixing the two channels are

not independent. Resonance in one channel builds up density of states in the other

channel and so |t′11|2, |t′12|2, |t′21|2 and |t′22|2 peak at same flux values. Conductance is
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determined by the addition of these individual scattering cross sections. Since they

are qualitatively same they add up coherently. When all these partial scattering

cross sections are coherently added the difference between the on state and the off

state becomes 100% for deep minimum and it is 50 % for shallow minimum in case

of solid line in Fig. 5.4, while it is only 60% for deep minimum and 12% for shallow

minimum in case of dashed line in Fig. 5.4. Such variations in magnitudes of drops

in conductance apart from variations in peak positions already discussed indicates

that it is not so efficient to make stable switches. In Fig. 5.6, we show G
2e2/h

for a two
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Figure 5.6: The figure shows a plot of G
2e2/h

as a function of φ/φ0. Here φ0 = hc/e.

The incoming electrons have energy E = 45~2

m∗a2
, the constant potential V0 of the ring

is such that V0 = 10~2

em∗a2
. With this choice q1 is real and q2 is imaginary. Thus, we

are considering in this case one propagating mode and one evanescent mode. The
solid (black) line is G

2e2/h
for l1/a = 5, l2/a = 5 and the dashed (red) line is G

2e2/h
for

l1/a = 3, l2/a = 7.

channel Aharonov-Bohm ring with l1/a = 5, l2/a = 5 (solid line) and with l1/a = 3,

l2/a = 7 (dashed line). Again we choose energy in the range given by Eq. (5.16).

However now we also take a non zero electrostatic potential V0 inside the ring such

that q1 is real and q2 is imaginary (see Eq. (5.21) and Eq. (5.22)). In other words

one channel is propagating and the other is evanescent. We have checked that such

a situation result in just as much diversity as that with two propagating modes.

Here we demonstrate one particular case and give arguments why the behavior is

general. Solid line shows two conductance minima and one conductance maximum

like the solid line in Fig. 5.4. It has first a shallow minimum and then has a deep
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minimum similar to solid line in Fig. 5.4. Dashed line shows two conductance

minima and one conductance maximum like the dashed line in Fig. 5.4. Here one

that was shallow minimum in Fig. 5.4 has become a deep minimum and the one

that was deep minimum in Fig. 5.4 has become shallow minimum. Unlike in Fig.

5.4, there is wave propagation in only one channel and since the other channel is

evanescent, it has no wave propagation. Peaks occur for propagating channel when

integral wave numbers fit into the total length of the ring [107]. But here we can see

|t′22|2 peak at same flux values as |t′11|2 because again in presence of channel mixing

the two modes are not independent. Resonance in the propagating channel boost

up density of states in the evanescent channel and hence the evanescent channel also

becomes highly conducting. Thus the diversity results from the random behavior of

the propagating channel.

We show the individual |t′ij|2s corresponding to Fig. 5.6 in Fig. 5.7. They

are again qualitatively same as the curves obtained in Fig. 5.6 which means the

individual components add up coherently just as it happened for two propagating

modes. Conduction along the evanescent mode is equally strong and diverse due to

the presence of the propagating mode.
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Figure 5.7: We use same parameters as in Fig. 5.5 and plot individual scattering
cross sections. (a) shows a plot of |t′11|2 as a function of φ/φ0. (b) shows a plot of
|t′12|2 as a function of φ/φ0. |t′21|2 as a function of φ/φ0 is identical to |t′12|2 as a
function of φ/φ0 due to Onsager reciprocality relation, so |t′21|2 is not shown. (c)
shows a plot of |t′22|2 as a function of φ/φ0. Here φ0 = hc/e. The solid (black) lines
are for l1/a = 5, l2/a = 5 and the dashed (red) lines are for l1/a = 3, l2/a = 7.
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Figure 5.8: The figure shows a plot of G
2e2/h

as a function of φ/φ0. Here φ0 = hc/e.

The incoming electrons have energy E = 47~2

m∗a2
, the constant potential V0 of the ring

is such that V0 =
10~2

em∗a2
. With this choice q1 is real and q2 is imaginary. Thus, we are

considering in this case one propagating mode and one evanescent mode. The solid
line is G

2e2/h
for l1/a = 5, l2/a = 5 and the dashed (red) line is G

2e2/h
for l1/a = 4,

l2/a = 6.

In Fig. 5.8, we show G
2e2/h

for a two channel Aharonov-Bohm ring with l1/a = 5,

l2/a = 5 (solid line) and with l1/a = 4, l2/a = 6 (dashed line). Incident energy and

the electrostatic potential are so chosen that like in Fig. 5.6 one channel is propagat-

ing and another is evanescent. Solid line shows one conductance maximum and one

conductance minimum instead of two conductance minima seen in earlier figures.

Only difference is that we have slightly changed the energy of the incoming electrons

from E = 45~2

m∗a2
(Fig. 5.6) to E = 47~2

m∗a2
(Fig. 5.8) keeping l1, l2 same. Dashed line

shows two conductance minima and one conductance maximum. The drops of two

minima are comparable which gives the appearance of a φ0/2 periodicity. This is

unlike what we saw in earlier figures. Here too all the plots of individual partial

scattering cross sections are qualitatively same as the plot of
∑

i,j |t′ij|2 as a function

of φ/φ0 and so not shown. The random behavior of conductance changes when we

make both the modes to be evanescent. An electron in an evanescent mode do not

acquire phase changes associated with propagation. Only phase changes are due to

Aharonov-Bohm effect and we find that within a period (0 to 2π) conductance is
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Figure 5.9: The figure shows a plot of G
2e2/h

as a function of φ/φ0 for different arm

lengths. Here φ0 = hc/e. The incoming electrons have energy E = 49~2

m∗a2
. The

constant potential V0 of the ring is such that V0 = 40~2

em∗a2
. With this choice q1 and

q2 are both imaginary. Thus, we are considering in this case two evanescent modes.
The exact value of l1 and l2 are given in the figure inset. For all arm length G

2e2/h
as a

function of φ/φ0 have the same nature. That means switching action is independent
of l1 : l2.

maximum at zero flux, then it goes through a deep minimum and rise again to a

maximum value. One can explain this as follows. Conductance being a symmetric

function of flux (Onsager reciprocality relation), is a function of (cosnφ/φ0). So it

maximizes at 0 flux and then decreases with flux. Periodicity is always φ0 in absence

of other competing source of phase changes and absence of resonances. This behav-

ior is independent of all parameters as will be demonstrated below. However since

evanescent modes are not very conducting we have to take smaller rings to get same

order of magnitude in conductance variations as that of propagating modes. But

the magnitude can be enhanced by taking a ring that can support many evanescent

modes as all modes add up coherently.

In Fig. 5.9, we have taken many choices of arm length and we have seen that

there is only one conductance maximum at flux φ/φ0 = 0 (approx) and only one
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conductance minimum at flux φ/φ0 = 2.5 (approx). Thus, here the behavior remains

uniform with changing the arm length. Conductance variation from maximum to

minimum is 82%. The individual |t′ij|2 s as a function of φ/φ0 show similar behavior
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Figure 5.10: We use same parameters as in Fig. 5.9 and plot individual scattering
cross sections. (a) shows a plot of |t′11|2 as a function of φ/φ0. (b) shows a plot of
|t′12|2 as a function of φ/φ0. |t′21|2 as a function of φ/φ0 is identical to |t′12|2 as a
function of φ/φ0 due to Onsager reciprocality relation, so |t′21|2 is not shown. (c)
shows a plot of |t′22|2 as a function of φ/φ0. Here φ0 = hc/e. The solid lines are for
l1/a = 0.1, l2/a = 0.1.

as that of Fig. 5.9 and shown in Fig. 5.10. In case of Fig. 5.10 (a), conductance

drops by 38%, in case of Fig. 5.10 (b), conductance drops by 18% and for Fig.

5.10 (c), conductance drops by 8%. When different channels add up coherently

percentage drop of conductance becomes 82%. By using larger and larger number

of evanescent channels percentage drop in conductance can thus be enhanced and

efficiency of switch can be increased.

It is not always possible to maintain the incidence energy (Em
∗a2

~2
) values constant

due to statistical fluctuation in voltage of the battery or due to temperature changes.

Now we will plot
∑

i,j |t′ij|2 as a function of φ/φ0 for different Em∗a2

~2
values and we
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will show that the behavior is also independent of incident energy when we employ

evanescent modes. This is not the case with propagating modes where changes of

incident energy result in just as much diversity that we get on changing l1 and l2 and

hence not shown here. In Fig. 5.11, two values of incident energy and electrostatic
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Figure 5.11: The figure shows a plot of G
2e2/h

as a function of φ/φ0 for different

incoming energy. Here φ0 = hc/e. The constant potential V0 of the ring is such that
V0 =

40~2

em∗a2
. With this choice q1 and q2 are both imaginary. Thus, we are considering

in this case two evanescent modes. The solid (black) line is G
2e2/h

for E = 45~2

m∗a2
. The

dashed (red) line is G
2e2/h

for E = 46~2

m∗a2
. The dotted (blue) line is G

2e2/h
for E = 47~2

m∗a2
.

For all energy values
∑

i,j |t′ij|2 as a function of φ/φ0 have the same nature. That
means switching action is independent of incident energy.

potential are so chosen that both channels are evanescent. Here again we find that
∑

i,j |t′ij|2 as a function of φ/φ0 is roughly independent of incident energy and the

drop is almost 75-80%. Since in the evanescent mode switching action is independent

of all parameters, switch can become stable, efficient and robust.

So far we have considered two propagating, one propagating - one evanescent

and two evanescent modes separately. For all these cases the total ring length were

the same and we only changed the relative ratio of arm lengths. In these cases we
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have shown that when there are propagating modes then the peaks are shifting and

the depth of the valleys are changing from shallow to deep. We have also shown

that in presence of channel mixing the conductance peaks are not determined by

resonance alone as thought before. However peaks are determined by the total

ring length. If we consider cases where the total ring length does not remain same

then one can get even more diverse behavior. Impurity scattering and temperature

changes can affect the total length as well. In Fig. 5.12 we have considered both the
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Figure 5.12: The figure shows a plot of G
2e2/h

as a function of φ/φ0 for two choice of

total ring lengths. Here φ0 = hc/e. The incoming electrons have energy E = 45~2

m∗a2
,

the constant potential V0 of the ring is 0. With this choice q1 and q2 are both real.
Thus, we are considering in this case two propagating modes. The solid line is G

2e2/h

for L/a = 10 (l1/a = 5, l2/a = 5) and the dashed line is G
2e2/h

for L/a = 8 (l1/a = 4,

l2/a = 4).

channels to be propagating with two choices of (l1 + l2). We have shown here that

resonance position of the solid line is different from the resonance position of the

dashed line. The solid line has a valley where the dashed line has a peak. But again

if we use evanescent modes then changes in total ring length can not result in diverse

behavior. So in Fig. 5.13 we have considered both the channels to be evanescent
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Figure 5.13: The figure shows a plot of G
2e2/h

as a function of φ/φ0. Here φ0 = hc/e.

The incoming electrons have energy E = 45~2

m∗a2
, the constant potential V0 of the ring

is such that V0 =
40~2

em∗a2
. With this choice q1 and q2 are both imaginary. Thus, we are

considering in this case two evanescent modes. The solid line is G
2e2/h

for L/a = 0.2

(l1/a = 0.1, l2/a = 0.1) and the dashed line is G
2e2/h

for L/a = 0.16 (l1/a = 0.08,

l2/a = 0.08).

with two choices of (l1+ l2). Here the nature of the solid curve and the dotted curve

are the same as that obtained so far. We have shown in previous figures that if we

use evanescent modes, conductance does not depend on the relative ratios of arm

lengths and Fermi energy and in this Fig. 5.13 we have shown that the conductance

also does not depend on the total ring length of the Aharonov-Bohm ring.

5.4 Conclusion

In this work we have studied two channel (transverse modes) Aharonov-Bohm ring.

When we consider both the channels to be propagating then we have shown that if

we change the parameters such as the total ring length, relative ratio of arm lengths,

Fermi energy etc., the behavior of the conductance becomes diverse in nature in dif-
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ferent cases. Similar situation arises if we take one propagating and one evanescent

modes. In presence of channel mixing the modes are not independent. Resonance

in the propagating channel boost up density of states in the evanescent channel and

hence the evanescent channel also becomes highly conducting. Such diverse behavior

supports Landauer’s claim that switch action based on interference principle are not

stable and practical. Finally we have considered both the modes to be evanescent

along the Aharonov-Bohm ring. Here we have found that conductance is qualita-

tively as well as quantitatively same for all variations in parameters like total ring

length, relative ratio of arm lengths, Fermi energy etc. We can obtain apprecia-

ble changes in conductance when using evanescent modes. Different channels add

up coherently and so by using larger and larger number of evanescent channels we

can enhance the percentage drop in conductance and hence efficiency of the switch.

Change in impurity configuration effectively changes the total ring length and the

relative ratio of arm lengths. Rise or drop in temperature effectively changes Fermi

energy and hence wavelength. Therefore, conductance behavior will be same if we

change the impurity configuration or temperature when we use evanescent modes.

Propagation is associated with phase changes which do not arise in case of evanes-

cent modes. In evanescent modes, phase changes are due to Aharonov - Bohm effect

only. Periodicity is always φ0 in absence of other competing source of phase changes.

Conductance being a symmetric function of flux is a function of cos(nφ/φ0). There-

fore within a period (0 to 2π) conductance is maximum at zero flux, then it goes

through a deep minimum and rise again to a maximum value. We can assign the

conductance maximum as on state and conductance minimum as off state of a switch

signifying 1 and 0 operation in Boolean algebra. Thus we can conclude that if we

employ evanescent modes only, we may be able to build stable, efficient and robust

quantum switches. In an experimental situation one does not apply an Aharonov-

Bohm flux but a uniform magnetic field [35] to obtain Aharonov-Bohm oscillation.

Lorentz force being weighted down by the velocity of light, uniform magnetic field

results in Aharonov-Bohm effect alone [35]. So in a device where one has to employ

many switches and can also require that one switch is on while an adjacent switch

is off can be achieved by intelligently designing the lengths of the rings so that their

areas are different and they capture different amounts of flux.

Earlier works have proposed the possibility of switch action with other geometric

configurations apart from Aharonov - Bohm ring such as T - shaped structure [86]

etc. We may also expect that if we employ evanescent modes in other geometries,

conductance will be independent of sample parameters. This is because propagation

along evanescent channels are not associated with phase changes. Phase changes can

only be induced by external stimuli which is electrostatic potential in case of Ref.

[86, 87].



Chapter 6

CURRENT CARRIED BY

EVANESCENT MODES AND

POSSIBLE DEVICE

APPLICATIONS

“Any intelligent fool can make things

bigger and more complex.....,

it takes a touch of genius..... and a lot of courage.....

to move in the opposite direction.”

–Albert Einstein.

Quantum tunneling of an electron through a classically forbidden regime has no

classical analogue and several aspects of it is still not understood. In this chapter

we analyze a situation where electronic current under the barrier can be measured

without disturbing the states under the barrier. In Section 6.2, we consider a mul-

tichannel Aharonov-Bohm ring and develop the correct formalism to calculate the

currents inside the ring when the states are evanescent. In Section 6.3, we have

discussed various transport phenomena like conductance current, circulating cur-

rent, persistent current etc as well as non-transport phenomenon like magnetization

using propagating as well as evanescent states. We also show unlike other proposed

quantum devices that such currents are not very sensitive to changes in material

parameters and environment. Finally this chapter is concluded in Section 6.4 with

the summary of the results and we have shown that there is possibility of robust

device action based on magnetic response using only evanescent mode.

85
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6.1 Introduction

In the last three decades, there has been a major interest in the properties of meso-

scopic systems [108]. Most of the experimental and theoretical studies of these

systems have involved transport measurements, usually of the resistance as a func-

tion of temperature or magnetic field. However, there is increasing interest in other

non-transport properties, such as magnetization. This has prompted a lot of exper-

imental works, including the study of arrays of mesoscopic systems, and the use of

very small Hall sensors and microsquid magnetometers. These studies give us an

unique opportunity to understand and explore manifestations of quantum mechanics

like persistent current, circulating current etc.

Besides recent advances in mesoscopic structures have led to the possibility of

new quantum semiconductor devices. These active quantum devices rely on quan-

tum effects for their operation based on interferometric principles, and are quantum

analog of well-known optical and microwave devices [6]. Several potential magnetic

devices have been proposed [109, 110], viz., Hall devices, magnetoresistors, induc-

tive proximity and distance sensors, fluxgate sensors, other magnetic sensors such

as magnetodiodes, magFETs, magnetotransistors and carrier domain magnetome-

ters. Some commonly seen devices that work in classical regime and use magnetic

properties are magnetic tape used for data storage, magnetic card reader, keycard

lock etc. The conventional devices operate in a classical diffusive regime and are

not very sensitive to variations in material parameters such as dimensions or the

presence of small impurities or non-uniformity in size and shape. These devices

operate by controlling the carrier density of quasi-particles. So far no quantum

devices in mesoscopic or nanoscopic length have been achieved practically because

quantum devices have an inherent shortcoming. Proposed quantum devices are not

very robust in the sense that the operational characteristics depend very sensitively

on material parameters, impurity configuration, shape and size of sample, temper-

ature and Fermi energy [89]. For example, incorporation of a single impurity in

the mesoscopic device can change, non-trivially, the interference of partial electron

waves propagating through the sample, and hence the electron transmission (opera-

tional characteristics) across the sample [90]. In such devices the actual problem of

control and reproducibility of operating thresholds become highly nontrivial. These

devices can be exploited if we achieve the technology that can reduce or control the

phase fluctuations [91] to a small fraction of 2π. Devices in which electrons carry

current without being scattered either elastically or inelastically (ballistic devices)

promise to be much faster and will consume less power than the conventional de-

vices. It should also be noted that quantum devices can exhibit multifunctional

property (e.g., single stage frequency multiplier) wherein the functions of an en-

tire circuit within a single element can be performed [88]. They can also lead to
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tremendous down sizing of electronic devices. The magnetization of the ring has a

spatial variation. This spatial variation can be used to store information just like a

spatial array of capacitors store information in present day computers or spatially

varying magnetic field in magnetic tapes. There can be an array of many quan-

tum rings of different sizes. These can cause a magnetization which has complex

spatial variation. A lot of work has been done in one dimensional quantum rings

[91, 92, 93, 94, 98, 99, 100, 107]. However, the experimental rings are always in two

dimension or in three dimension. Such systems have not received much theoreti-

cal attention because multichannel junctions are very difficult to treat theoretically.

Also open rings where particle exchange can occur and temperature can be defined

(a mesoscopic grand canonical system) is more general as closed ring properties can

be seen as a special case [111]. This will be more realistic to study. Besides, such an

open ring can exhibit some novel properties like current magnification or an evanes-

cent mode that have no analogies in closed systems. Earlier models either do not

account for channel mixing or do not allow the inclusion of evanescent modes. In

our present work we account for both of these allowing us to study evanescent states

in realistic two-dimensional and three-dimensional systems. Evanescent states have

no classical analogs or classical interpretation in terms of wave packets. So cur-

rent carried by an evanescent mode, time of flight in evanescent mode, velocity of

evanescent mode etc are not well established. We show that magnetization due to

such evanescent states has very interesting manifestation of quantum effects. We

also argue that such effects can be used to build stable devices that uses quantum

interference effects. We also study current magnification effect.

6.2 Theoretical Analysis

Fig. 6.1 represents the schematic diagram of a finite thickness mesoscopic quantum

ring under consideration. Electronic transport in such systems can be well described

by an effective mass theory [6]. Incident electrons coming from the source reservoir

on the left (say), gets scattered by the ring. Division of wave front occurs at junction

J1; a partial wave propagates along the upper arm of the ring and another partial

wave propagates along the lower arm of the ring. These two partial waves recombine

and give a transmittance that bears the signature of interference between the two

partial waves along the two arms of the ring. This interference can be modified by

an Aharonov-Bohm (A-B) flux through the center of the ring. The description of

the figure is given in further detail in the figure caption.

The Schrödinger equation for a quasi one dimensional wire is (the third degree



88 Current carried by evanescent modes and possible device applications

Figure 6.1: A finite thickness quantum ring of width a made up of normal metal or
semiconductor is indicated by the blue colored region. On either sides the quantum
ring is attached with quantum wires (stripped region) made up of normal metal or
semiconductor. On the left of the above system there is the source reservoir whose
chemical potential is µ1 and on the right there is the drain reservoir whose chemical
potential is µ2. A potential difference (µ1 − µ2) between the source reservoir and
the drain reservoir drives a transport current. The wave functions of the electron in
different regions is shown in the figure at their respective places. Different regions
are marked as I, II, III and IV. The ring is pierced by an Aharonov-Bohm (A-B)
flux φ. α is the A-B phase an electron picks up in region II and β is that in region
III. J1 is the junction where the regions I, II and III meets and J2 is the junction
where the regions II, III and IV meets.

of freedom, i.e., z-direction, is usually frozen by creating a strong quantization [6])

− ~
2

2m∗
(
∂2ψ

∂x2
+
∂2ψ

∂y2
) + V (x, y)ψ(x, y) = Eψ(x, y) (6.1)

Here the x coordinate is along the wire, y coordinate is perpendicular to it, m∗ is

the electron effective mass and E is the electron energy. In regions I and IV (see

Fig. 6.1) we have only the confinement potential. That is

V (x, y) = V (y).

Whereas in regions II and III apart from the confinement potential we take a constant
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potential V0 that can be used to excite evanescent modes inside the ring. That is

V (x, y) = V (y) + V0.

Without any loss of generality we take V (y) to be an infinite square well potential

of width a. That is

V (y) =

{

0 if −a/2 < y < a/2;

∞ if |y| ≥ a/2.

The wave functions in the ring can be obtained by solving Eq. (6.1) where we assume

the ring to be so large compared to the de Broglie wave length that its curvature

can be neglected [101]. The length of the ring is L = lU + lL, where lU is the length

of the upper arm and lL is the length of the lower arm. The magnetic field appears

just as a phase of ψ(x, y) and will be accounted for while applying the boundary

conditions [54]. In regions I and IV Eq. (6.1) can be separated as

ψ(x, y) = φ(x)ξ(y) (6.2)

to give

− ~
2

2m∗
∂2φ(x)

∂x2
=

~
2k2

2m∗
φ(x) (6.3)

and

− ~
2

2m∗
∂2ξ(y)

∂y2
+ V (y)ξ(y) = εξ(y) (6.4)

Since V (y) is an infinite square well potential of width a, Eq. (6.4) gives

ξn(y) = sin
nπ

a
(
a

2
+ y) (6.5)

and

εn =
n2π2

~
2

2m∗a2
(6.6)

Eq. (6.3) has solution of the form

φn(x) = e±iknx

with

kn =

√

2m∗E

~2
− n2π2

a2
(6.7)

or

E = εn +
~
2k2n
2m∗

(6.8)

So wave function in region I assuming electron incidence occurs along channel 1 and
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electrons are also reflected to channel 1, can be written as

ψ(I)(1)1 = (
eik1x√
k1

+
r
′(1)
1 e−ik1x√

k1
) sin

π

a
(y +

a

2
) (6.9)

Wave function in region I assuming electron incidence occurs along channel 1 and

electrons are reflected to channel 2, can be written as

ψ(I)(1)2 = (
r
′(1)
2 e−ik2x√

k2
) sin

2π

a
(y +

a

2
) (6.10)

Wave function in region IV assuming electron incidence occurs along channel 1 and

electrons are transmitted to channel 1 can be written as

ψ(IV )(1)1 = (
t
′(1)
1 eik1x√
k1

) sin
π

a
(y +

a

2
) (6.11)

Wave function in region IV assuming electron incidence occurs along channel 1 and

electrons are transmitted to channel 2 can be written as

ψ(IV )(1)2 = (
t
′(1)
2 eik2x√
k2

) sin
2π

a
(y +

a

2
) (6.12)

From Eq. (6.7), in the first mode

k1 =

√

2m∗E

~2
− π2

a2
(6.13)

is the propagating wave vector and in the second mode

k2 =

√

2m∗E

~2
− 4π2

a2
(6.14)

is the propagating wave vector. For

4π2

a2
< E <

9π2

a2
(6.15)

both k1 and k2 are real as can be seen from Eq. (6.13) and Eq. (6.14). In this

energy range kn for n > 2 are imaginary as can be seen from Eq. (6.7) implying

that there are two propagating channels. In the leads we can not have evanescent

modes [24, 27].

Now for the regions II and III the potential is V (x, y) = V (y) + V0. In these

regimes using qn as wave vector, the energy can be written similarly like region I
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and IV as follows

E − V0 =
~
2q2n
2m∗

+
n2π2

~
2

2m∗a2
(6.16)

or

qn =

√

2m∗(E − V0)

~2
− n2π2

a2

Hence, in the first mode

q1 =

√

2m∗(E − V0)

~2
− π2

a2
(6.17)

is the wave vector and in the second mode

q2 =

√

2m∗(E − V0)

~2
− 4π2

a2
(6.18)

is the wave vector. In regions II and III, three different situations can arise depending

on the choice of energy, E, potential V0 and n. Wave functions in these regimes for

E > V0 +
n2π2

~
2

2m∗a2
can be written similarly as in Eqs. (6.9) - (6.12).

ψ(II)
(1)
1 = (

A
(1)
1 eiq1x√
q
1

+
B

(1)
1 e−iq1x√

q
1

) sin
π

a
(y +

a

2
) (6.19)

ψ(II)
(1)
2 = (

A
(1)
2 eiq2x√
q
2

+
B

(1)
2 e−iq2x√

q
2

) sin
2π

a
(y +

a

2
) (6.20)

ψ(III)
(1)
1 = (

C
(1)
1 eiq1x√
q
1

+
D

(1)
1 e−iq1x√
q
1

) sin
π

a
(y +

a

2
) (6.21)

ψ(III)
(1)
2 = (

C
(1)
2 eiq2x√
q
2

+
D

(1)
2 e−iq2x√
q
2

) sin
2π

a
(y +

a

2
) (6.22)

A
(1)
1 , B

(1)
1 , A

(1)
2 , B

(1)
2 are the amplitudes of wave functions in upper arm and C

(1)
1 ,

D
(1)
1 , C

(1)
2 , D

(1)
2 are the amplitudes of wave functions in lower arm for incidence

of current along channel 1. Similarly, A
(2)
1 , B

(2)
1 , A

(2)
2 , B

(2)
2 are the amplitudes of

wave functions in upper arm and C
(2)
1 , D

(2)
1 , C

(2)
2 , D

(2)
2 are the amplitudes of wave

functions in lower arm for incidence of current along channel 2. Depending on the

choice of energy E and potential V0, q1 and q2 can be real (propagating mode) as

well as imaginary (evanescent mode). Such evanescent states can always be excited

in the internal regions of the system but not in leads [24, 27]. In the regimes II and

III, we can choose V0 to be non-zero such that for n = 1, 2, E < V0 +
n2π2~2

2m∗a2
. Then

we are considering both channels (modes) as evanescent channels. qn is replaced by
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isn and wave functions can be similarly written as

ψ(II)
(1)
1 = (

A
(1)
1 e−s1x√
is1

+
B

(1)
1 es1x√
is1

) sin
π

a
(y +

a

2
) (6.23)

ψ(II)
(1)
2 = (

A
(1)
2 e−s2x√
is2

+
B

(1)
2 es2x√
is2

) sin
2π

a
(y +

a

2
) (6.24)

ψ(III)
(1)
1 = (

C
(1)
1 e−s1x√
is1

+
D

(1)
1 es1x√
is1

) sin
π

a
(y +

a

2
) (6.25)

ψ(III)
(1)
2 = (

C
(1)
2 e−s2x√
is2

+
D

(1)
2 es2x√
is2

) sin
2π

a
(y +

a

2
) (6.26)

Note that this form of the wave functions along with its imaginary normalization

constant is necessary to give the correct expression for current in evanescent modes.

We can also choose the constant potential V0 and the integer value of n
2π2

~
2

2m∗a2
in such a

fashion that one channel (or mode) is propagating and the other channel (or mode)

is evanescent and we can describe the wavefunctions appropriately.

In Fig. 6.1 the potential V0 in the shaded region need not be made by an

electrostatic field. One can do it by designing the system as shown in Fig. 6.2. Fig.

6.2 represents the schematic diagram of a mesoscopic interferometer (made up of

normal metal or semiconductor). The width of the quantum wire a, is greater than

the width of quantum ring w. For the regions II and III in Fig. 6.2, one can obtain

just like in Eq. (6.17) and (6.18),

q′1 =

√

2m∗E

~2
− π2

w2
=

√

2m∗E

~2
− π2

a2
+
π2

a2
− π2

w2
=

√

2m∗(E − V ′0)

~2
− π2

a2
(6.27)

where π2

a2
− π2

w2 = −2m∗V ′

0

~2
. Similarly, in the second mode

q′2 =

√

2m∗(E − V ′′0 )

~2
− 4π2

a2
(6.28)

where 4π2

a2
− 4π2

w2 = −2m∗V ′′

0

~2
. Therefore, V ′0 and V ′′0 play the same role as V0 in Eq.

(6.17) and (6.18). However, it simply originates from geometric parameters and not

from an electrostatic potential. The dispersion relations for different regions (I, II

and III, IV) are also shown in Fig. 6.2. (i) In regions I and IV, from Eq. (6.8) we see

that E is given by E(kn) =
~
2k2n
2m∗

+ n2π2
~
2

2m∗a2
, where n = 1, 2, 3, ..., denotes the modes.

These dispersion relations for different modes indexed by n are indicated by solid

lines (see Fig. 6.2). The offset values are obtained at π2

a2
(for n = 1), 4π2

a2
(for n = 2)

etc and are indicated by dotted lines. (ii) In regions II and III, from Eq. (6.27) and

Eq. (6.28) E is given by E(q′n) − V ′0 (or V ′′0 ) =
~
2q′2n
2m∗

+ n2π2~2

2m∗a2
, where n = 1, 2, 3, ...,
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Figure 6.2: Top: Another schematic diagram of mesoscopic interferometer coupled
to the left and right electron reservoirs. Electrostatic potential is zero everywhere.
Bottom: Energy level dispersion curve for each region. Dispersion relation, E(kn)
vs. kn obtained from Eq. (6.8) for propagating modes in regions I and IV, indicated
by solid lines. Dispersion relation, E(qn) vs. qn obtained from Eq. (6.27) and Eq.
(6.28) for evanescent modes in regions II and III, indicated by dash-dotted lines.

denotes the modes. The dispersion relations, E(q′n) vs. q
′
n obtained from Eq. (6.27)

for different modes indexed by n are indicated by dash-dotted lines (see Fig. 6.2).

Here the offset values are obtained at π2

w2 (for n = 1), 4π2

w2 (for n = 2), and indicated

by the second brackets between the dotted lines. There are no energy levels between

the dotted lines at π2

a2
(for n = 1) and at 9π2

a2
(for n = 3) within the ring but there

are propagating states in the leads. In these energy regimes, the electrons tunnel

through as evanescent modes described by Eq. (6.23) - Eq. (6.26).

Note that a two dimensional quantum wire can be also converted into a Aharonov-

Bohm set up as shown in Fig. 6.3. Essentially one can form a cylinder that can

enclose a flux [102]. In this case all the analysis given above remains the same. For

example if now we choose cylindrical coordinates the wave function in Eq. (6.19)

becomes

ψ(II)
(1)
1 = (

A
(1)
1 eim1θ

√
m1

+
B

(1)
1 e−im1θ

√
m1

) sin
π

a
(z +

a

2
) (6.29)

In fact this makes analysis much simpler because m1 stands for angular momentum
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Figure 6.3: Cylindrical Aharonov-Bohm set up

and takes into account the curvature of the ring. The advantage of this set up is

already described by S. Mukherjee et al. [112, 113].

In our work (see Ref. [112, 113]) we proposed a junction scattering matrix S for

a multi-channel junction that can be easily generalized to any number of channels.

One can match the wave functions depicted in Fig. 6.1 at junction J1 and J2

and conserve the currents by using these S-matrices that give us a set of linear

equations. For evanescent modes the internal wavefunctions has to be appropriately

chosen, given by Eqs. (6.23) - (6.26). We can calculate the coefficients A
(1)
1 , A

(1)
2 ,

B
(1)
1 , B

(1)
2 , A

(2)
1 , A

(2)
2 , B

(2)
1 , B

(2)
2 , C

(1)
1 , C

(1)
2 , D

(1)
1 , D

(1)
2 , C

(2)
1 , C

(2)
2 , D

(2)
1 and D

(2)
2 by

matrix inversion.

The general definition of current (I) is given by

I =

∫ a
2

−a
2

e~

2im∗
(Ψ† ~▽Ψ−Ψ~▽Ψ†)dy (6.30)

We are considering that there are two channels (modes) in the ring, which are both

propagating. The current (I) in propagating mode is obtained by calculating Eq.

(6.30) for wave functions given by equations from Eq. (6.19) to Eq. (6.22). For such

propagating mode in upper arm, for incidence along channel 1, the partial current

is given by

I
(1)
U (pro) =

e~

m∗
[|A(1)

1 |2 − |B(1)
1 |2 + |A(1)

2 |2 − |B(1)
2 |2] (6.31)

For propagating mode in upper arm, for incidence along channel 2, the partial

current is given by

I
(2)
U (pro) =

e~

m∗
[|A(2)

1 |2 − |B(2)
1 |2 + |A(2)

2 |2 − |B(2)
2 |2] (6.32)

Similarly, for propagating mode in lower arm, for incidence along channel 1 and 2,
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the partial currents are given by

I
(1)
L (pro) =

e~

m∗
[|C(1)

1 |2 − |D(1)
1 |2 + |C(1)

2 |2 − |D(1)
2 |2] (6.33)

and

I
(2)
L (pro) =

e~

m∗
[|C(2)

1 |2 − |D(2)
1 |2 + |C(2)

2 |2 − |D(2)
2 |2] (6.34)

When both modes are propagating using Eqs. (6.31) and (6.32) we can write the

net current in upper arm as

IU = I
(1)
U (pro) + I

(2)
U (pro) (6.35)

When both modes are propagating using Eqs. (6.33) and (6.34) we can write the

net current in lower arm as

IL = I
(1)
L (pro) + I

(2)
L (pro) (6.36)

Next we consider that there are two channels (modes) in the ring, one being propa-

gating and other being evanescent. The current (I) using one propagating mode and

one evanescent mode is obtained by calculating Eq. (6.30) choosing the wavefunc-

tions appropriately for propagating mode and evanescent mode given in Eq. (6.19)

to Eq. (6.26). In this case in upper arm for incidence along channel 1 the partial

current is given by

I
(1)
U (pe) =

e~

m∗
[|A(1)

1 |2 − |B(1)
1 |2] + e~

im∗
[A

(1)
2

∗
B

(1)
2 e−iα − A

(1)
2 B

(1)
2

∗
eiα] (6.37)

For one propagating mode and one evanescent mode in upper arm, for incidence

along channel 2, the partial current is given by

I
(2)
U (pe) =

e~

m∗
[|A(2)

1 |2 − |B(2)
1 |2] + e~

im∗
[A

(2)
2

∗
B

(2)
2 e−iα − A

(2)
2 B(2)2

∗eiα] (6.38)

Similarly, for one propagating mode and one evanescent mode in lower arm, for

incidence along channel 1 and 2, the partial currents are given by

I
(1)
L (pe) =

e~

m∗
[|C(1)

1 |2 − |D(1)
1 |2] + e~

im∗
[C

(1)
2

∗
D

(1)
2 e−iα − C

(1)
2 D

(1)
2

∗
eiα] (6.39)

and

I
(2)
L (pe) =

e~

m∗
[|C(2)

1 |2 − |D(2)
1 |2] + e~

im∗
[C

(2)
2

∗
D

(2)
2 e−iβ − C

(2)
2 D

(2)
2

∗
eiβ] (6.40)

For using one propagating mode and one evanescent mode the net current in upper
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arm is given by

IU = I
(1)
U (pe) + I

(2)
U (pe) (6.41)

For using one propagating mode and one evanescent mode the net current in lower

arm is given by

IL = I
(1)
L (pe) + I

(2)
L (pe) (6.42)

Next we consider that both the channels are evanescent. The current (I) for two

evanescent modes is obtained by calculating Eq. (6.30) choosing the wavefunctions

appropriately for evanescent modes given in Eq. (6.23) to Eq. (6.26). For such

evanescent modes the partial current in upper arm, for incidence along channel 1 is

given by

I
(1)
U (eva) =

e~

im∗
[A

(1)
1

∗
B

(1)
1 e−iα −A

(1)
1 B

(1)
1

∗
eiα +A

(1)
2

∗
B

(1)
2 e−iα −A

(1)
2 B

(1)
2

∗
eiα] (6.43)

For evanescent mode the partial current in upper arm, for incidence along channel

2 is given by

I
(2)
U (eva) =

e~

im∗
[A

(2)
1

∗
B

(2)
1 e−iα −A

(2)
1 B

(2)
1

∗
eiα +A

(2)
2

∗
B

(2)
2 e−iα −A

(2)
2 B

(2)
2

∗
eiα] (6.44)

Similarly, for evanescent mode in lower arm and incidence along channel 1 and 2,

the partial currents are given by

I
(1)
L (eva) =

e~

im∗
[C

(1)
1 D

(1)
1

∗
eiβ −C

(1)
1

∗
D

(1)
1 e−iβ +C

(1)
2 D

(1)
2

∗
eiβ −C

(1)
2

∗
D

(1)
2 e−iβ] (6.45)

and

I
(2)
L (eva) =

e~

im∗
[C

(2)
1 D

(2)
1

∗
eiβ −C

(2)
1

∗
D

(2)
1 e−iβ +C

(2)
2 D

(2)
2

∗
eiβ −C

(2)
2

∗
D

(2)
2 e−iβ] (6.46)

From Eqs. (6.43) and (6.44) we can write for evanescent modes the net current in

upper arm is given by

IU = I
(1)
U (eva) + I

(2)
U (eva) (6.47)

Similarly, from Eqs. (6.45) and (6.46) we can write for evanescent modes net current

in lower arm is given by

IL = I
(1)
L (eva) + I

(2)
L (eva) (6.48)

The magnetic induction ~B at the position ~x generated by the current induced

by A-B flux is given by the Biot and Savart law [114]

d ~B =
kI(d~l × ~x)

|~x|3
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where ~x is the position vector. For the geometry described in Fig. 6.1 we will

calculate (IU .lU + IL.lL) taking two propagating modes using Eq. (6.35) and Eq.

(6.36), taking one propagating and one evanescent mode using Eq. (6.41) and Eq.

(6.42) and taking two evanescent modes using Eq. (6.47) and Eq. (6.48) which will

give the strength of magnetization.

6.3 Results and Discussions

6.3.1 Conductance of a multi-channel A-B ring

We are considering two channel A-B ring that are characterized by four transmission

amplitudes t
′(1)
1 , t

′(1)
2 , t

′(2)
1 and t

′(2)
2 and four reflection amplitudes r

′(1)
1 , r

′(1)
2 , r

′(2)
1 and

r
′(2)
2 . Landauer’s formula gives the two probe conductance G as

G =
2e2

h

∑

i,j

|t′(i)j |2. (6.49)

The transmission amplitude from mode i to mode j is t
′(i)
j . G is a strongly oscillating

function of φ/φ0 implying we can use flux to drive the system from a conducting

state to an insulating state. In case of a triode, we can use grid voltage to change the

current flow from cathode to anode and therefore use it as a switch or a transistor.

Similarly, in this A-B set up we can use magnetic field to control the current from

source to drain and similarly we can use it as a switch or a transistor.

In an A-B ring, switching action is based on constructive and destructive inter-

ference and is extremely sensitive to small changes in parameters like Fermi energy,

ring length, arm lengths etc. They are practically impossible to control [89]. This

fact changes completely if we use evanescent modes [112]. An electron in an evanes-

cent mode do not acquire phase changes associated with propagation or impurity

scattering. Only phase changes are due to A-B effect and we find that within a

period (0 to 2π) conductance is maximum (or minimum) at zero flux, then it goes

through a deep minimum (or a maximum) and rises (or falls) again to a maximum

(or minimum) value. One can explain this as follows. Conductance being a sym-

metric function of flux (Onsager reciprocality relation), is a function of (cosnφ/φ0).

So it maximizes (or minimizes) at 0 flux and then decreases (or increases) with flux.

Periodicity is always φ0 in absence of other competing source of phase changes and

absence of resonance. This behavior is independent of all parameters. Since evanes-

cent modes are not very conducting we have to take smaller rings. A plot of the

conductance is shown in Fig. 6.4 that exhibits this.
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Figure 6.4: The figure shows plot of conductance, G/2e2

h
as a function of φ/φ0 using

evanescent modes for different arm lengths. Total ring length is the same in all cases.
Here φ0 = hc/e. The energy of incident electrons, E = 49~2

m∗a2
. The exact values of lU

and lL are given in the figure inset. For all sets of arm lengths G/2e2

h
as a function

of φ/φ0 have the same nature.

6.3.2 Circulating current in a multi-channel A-B ring

According to Landauer-Büttiker formalism, when lU = lL, the current through the

entire system (or sample) (IS) splits at junction J1 and divides into two parts, the

upper arm current, IU (i.e., IS/2) flows in clockwise direction along upper arm of

the ring and the lower arm current, IL (i.e., IS/2) flows in anti-clockwise direction

along lower arm of the ring. These two currents are equal in magnitude. When

lU 6= lL, in absence of flux, these two currents are different in magnitude. Büttiker

[115] suggested that this difference arises due to a circulating current, Ic, such that

the current in the upper arm is then given by IU = IS/2+ Ic, and the current in the

lower arm is given by IL = IS/2 − Ic. However, if this definition is taken seriously,

then even in a classical ring with different resistances in different arms one obtains

different currents in the presence of a dc current and hence circulating current. It is

clear then that with this definition one can obtain circulating current even classically

without invoking quantum mechanics at all. However, ten years after Büttiker’s dis-

cussion, in 1995, Jayannavar and Deo [116] showed that there exists two distinct

possibilities depending on the choice of lU , lL (lU 6= lL) and Fermi energy. In the

first possibility, for a certain range of incident Fermi energies (or wave vectors),
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the current in the two arms IU and IL are individually less than the total current

through the system (or sample) IS, such that IS = (IU + IL). (the conservation of

current or Kirchhoff’s law). Then currents in two arms flow in the direction of the

applied field. In such a situation we do not assign any circulating current flowing

in the ring. However, in a certain energy interval, it turns out that current in one

arm is larger than the total current IS (magnification property). This implies that,

to conserve the total current at the junctions, the current in the other arm must be

negative or should flow against the applied external field induced by difference in the

chemical potentials. In such a situation one can interpret that the negative current

flow in one arm of the ring continues to flow in the ring as a circulating current.

The direction of circulating current can be inferred as follows. First we consider a

case when the net current flows in the right direction, i.e., µ1 > µ2. If for this case,

the negative current flows in the lower arm, then the circulating current flows in a

clockwise (or positive) direction. If, on the other hand, the negative current flows in

the upper arm, then the circulating current flows in an anti-clockwise (or negative)

direction. The negative current in one arm is a purely quantum mechanical effect.

This procedure of assigning circulating current only when negative current flows in

one of the arms is the same procedure that is well known in classical ac network

analysis [117]. It is well known that, when a parallel resonant circuit (capacitance C

connected parallel with a combination of inductance L and resistance R) is driven

by external electromotive force (generator), the circulating current arises in an LCR

circuit at a resonant frequency. This effect is sometimes referred to as a current mag-

nification. In this classical network, when the external driving frequency is around

a resonance frequency, circulating currents are possible. Moreover, at the resonance

the total net current amplitude in the circuit is at its minimum value. It turns out

that even in quantum problem the circulating current arises near the antiresonances

or transmission zeros of the ring structure coupled to leads. Interestingly this circu-

lating current can lead to a large orbital magnetic moment in absence of magnetic

field, however in a non-equilibrium situation. Based on the constraints on the local

currents, Jayannavar et al. [116, 118] showed the existence of a circulating current

in a one dimensional mesoscopic ring with asymmetric arm lengths in the absence

of an Aharonov-Bohm flux. This circulating current had nothing to do with the

Aharonov-Bohm flux but it was named the persistent current in the presence of a

transport current. The unique behaviors of circulating currents have been studied

in various types of interferometers, such as single loop interferometers with a stub

[119] or impurity potential [120, 121] embedded in one of arm, an evanescent wave

interferometer with a potential well [122], a multichannel interferometer with an

impurity [123], double-loop interferometers [124, 125], double quantum dot inter-

ferometers [126, 127], multiple-arm interferometers [128, 129], and spin-dependent

interferometers [129, 130, 131]. In such interferometers, circulating heat [127] and
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spin [129, 130, 131] currents have been reported, as well as electric circulating cur-

rents. In 2010, Su et. al. [132] formulated the constraint condition for circulating

current as follows:

Ic =
1

2
sign[IU ](|IU |+ |IL| − I(S)) (6.50)

The above equation (there is a missing factor, sign[IU ] or −sign[IL], which is respon-

sible for the direction of the circulating current, in the expression for the circulating

current which was introduced for the first time in Ref. [124]) shows that not just any

classical parallel resistor can have a circulating current. The definition then allows

us to capture a pure quantum mechanical effect for electron transport through a

two-terminal interferometer.

We plot circulating current as well as transmission coefficient as a function of

incident Fermi energy for the mesoscopic ring considered in Fig. 6.1. The transmis-
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Figure 6.5: The figure shows plot of circulating current (Ic) in the dimensionless
units as a function of incident Fermi energy (solid curve) and transmission coef-

ficient (
∑

i,j |t
′(i)
j |2) as a function of incident Fermi energy (dashed curve) using

two propagating modes. Here upper arm length, lU/a = 3 and lower arm length,
lL/a = 7.

sion coefficient across a metallic ring connected to two reservoirs and in the presence

of magnetic flux has been investigated by several authors [133, 134], in connection

with the Aharonov-Bohm effect. We first consider a case where both the channels

(modes) in the ring are propagating described in Eq. (6.35) and Eq. (6.36). In
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Fig. 6.5 we have plotted the circulating current, Ic (solid curve) as a function of

incident Fermi energy. We have taken lU/a = 3 and lL/a = 7. In Fig. 6.5 we have

also plotted the transmission coefficient,
∑

i,j |t
′(i)
j |2 as a function of incident Fermi

energy (dashed curve). We notice that the circulating current appears as we cross

the energy at IS = 0.

Now we will consider the case where one mode is propagating and the other

mode is evanescent described in Eq. (6.41) and Eq. (6.42). In Fig. 6.6 we have

plotted circulating current, (Ic) (solid curve) as a function of Fermi energy of incident

electrons. We have taken lU/a = 3 and lL/a = 7. In Fig. 6.6 we have also plotted

the transmission coefficient,
∑

i,j |t
′(i)
j |2 as a function of Fermi energy (dashed curve).

We notice that the circulating current appears as we cross the energy at IS = 0.
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Figure 6.6: The figure shows plot of circulating current (Ic) in dimensionless unit
as a function of incident Fermi energy (solid curve) and transmission coefficient

(
∑

i,j |t
′(i)
j |2) as a function of Fermi energy of incident electrons (dashed curve) using

one propagating mode and one evanescent mode. Here upper arm length is lU/a = 3
and lower arm length is lL/a = 7.

When both modes are evanescent then there is no circulating current in the

system.
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6.3.3 Magnetization of a multi-channel A-B ring

The geometry in consideration (Fig. 6.1, Fig. 6.2, Fig. 6.3) can have a magnetization

due to internal currents in regions II and III. A proper formulation for evaluating

such internal currents in the regime of evanescent modes is still not well established

[116, 118] and the correct formalism that gives consistent results in every situation

is given in Eqs. (6.31) - (6.48). This internal current can induce a magnetic field

that can be measured. There are two different origins for this magnetization. The

first origin of magnetization is due to transport current and this magnetization can

be there even in absence of the A-B flux. The sample current IS splits up into IU

and IL in upper arm and lower arm, respectively. For lU 6= lL, IU 6= IL and thus

the clockwise current is different from anticlockwise current. This can result in a

magnetization, magnetization strength is given by (IU .lU + IL.lL). The current in

lower arm, IL by definition is negative. In regimes of circulating current IL becomes

positive leading to a huge enhancement in magnetization which is shown in Fig. 6.7

where we have plotted magnetization strength as a function of Fermi energy where

flux value is taken as 0 using two propagating modes.
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Figure 6.7: The figure shows plot of magnetization strength in dimensionless unit as
a function of Fermi energy using two propagating modes. Here upper arm length,
lU/a = 3 and lower arm length, lL/a = 7.
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The second origin of magnetization is due to the A-B flux and this magnetization

can exist even if µ1 = µ2 and there is no incident current. A-B flux induces an

equilibrium current and this current is always an odd function of flux [103]. The

first kind of magnetization is further modified by the flux but is always an even

function of flux. It is known that the odd component can be determined from the

even component [111]. Besides, the even component can give the odd component in

the analytically continued regime where the even component is absent. Therefore,

if one decides to construct a device with closed rings without any connection to

external reservoirs our analysis is general to give the magnetization even in that

regime. The total magnetization is therefore a linear combination of an even and

an odd function of flux and hence can be any arbitrary function of flux. It will be a

function of cos(nφ/φ0) as well as sin(nφ/φ0). Therefore unlike the conductance it will

not maximize (or minimize) at 0 flux and then decreases (or increases) with flux. It

can maximize at any arbitrary flux. Therefore it remains to be seen if magnetization

due to evanescent modes remain independent of material parameters. If it does then

one can build stable devices that rely on magnetization instead of conductance.

In Fig. 6.8 (a), (b) and (c), we have plotted the strength of magnetization, i.e.,

IU .lU+IL.lL as a function of φ/φ0 for different parameters like different arm lengths,

different Fermi energies, different ring lengths, respectively using two propagating

modes. In Fig. 6.8 (a), we are taking Fermi energy of the incident electrons as

E = 55~2

m∗a2
. Keeping the total ring length (L = lU + lL) same we have taken two

different choices of arm length ratio (lU : lL) indicated by solid line and dashed

lines. Upper and lower arm lengths for solid and dashed lines are shown in figure

caption. The maximum of the solid line and the maximum of the dashed line are

not obtained at the same flux value. Similar situation arises for the minimum also.

Thus, the behavior of the solid line and the dashed line is not uniform. In Fig. 6.8

(b), we are choosing two different Fermi energies of the incident electrons keeping

the arm length value as lU/a = 5, lL/a = 5, indicated by the solid and dashed lines.

The energy values are shown in figure caption. The maximum and the minimum for

solid and dashed lines are not obtained at the same flux values. Thus, the behavior

of the solid and the dashed lines are not uniform. In Fig. 6.8 (c) keeping the arm

length ratio (lU : lL) same we have taken two different choices of total ring length

(L/a = lU/a+ lL/a) for incident Fermi energy, E = 55~2

m∗a2
. The ring lengths for solid

and dashed lines are shown in figure caption. The maximum of the solid line and

the maximum of the dashed line are not obtained at the same flux value. Similar

situation arises for the minimum also. While the solid line goes up with increasing

flux values, the dashed line goes down, reaches the minimum and then rises up.

Fig. 6.8 (c) is also showing non uniform behavior. Thus we can conclude that using

propagating modes we can not build reliable devices based on magnetic properties.

In Fig. 6.9 (a), (b) and (c), we have plotted the strength of magnetization,
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Figure 6.8: The figures (a) - (c) show plot of magnetization strength in dimensionless
unit as a function of φ/φ0 for different choice of parameters. Here φ0 = hc/e. The
constant potential V0 is taken as 0, so that both the modes are propagating. In (a),
the incoming electrons have energy E = 55~2

m∗a2
. The solid line is for lU/a = 5, lL/a = 5

and the dashed line is for lU/a = 4, lL/a = 6. In (b) the arm length ratio is taken as
lU : lL = 5 : 5. The solid line is for E = 55~2

m∗a2
and the dashed line is for E = 57~2

m∗a2
.

In (c), the incoming electrons have energy E = 55~2

m∗a2
. Keeping the arm length ratio

same (lU : lL = 1 : 1) we have taken here different ring lengths. The solid line is for
L/a = 10 and the dashed line is for L/a = 8.

i.e., IU .lU + IL.lL as a function of φ/φ0 for different parameters like different arm

lengths, different Fermi energies and different ring lengths, respectively using one

propagating mode and one evanescent mode. We have demonstrated that such a

situation results in just as much diversity as that with two propagating modes. In

Fig. 6.9 (a), we have taken Fermi energy E = 45~2

m∗a2
and keeping the total ring

length same, we have taken two different choices of arm lengths ratio indicated by

the solid and dashed lines. Upper and lower arm lengths for solid and dashed lines

are shown in figure caption. With increasing the flux values, the solid line goes down

whereas the dashed line rises up steeply. The solid line has no well defined maximum

whereas the dashed line has sharp maximum. Thus the behavior of the solid line and

the dashed line is not uniform. In Fig. 6.9 (b) we are choosing two different Fermi

energies of the incident electrons keeping the arm length value as lU/a = 1, lL/a = 1,

indicated by the solid and the dashed lines. The energy values are shown in figure
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caption. The solid line goes down with increasing the flux whereas the dashed line

rises up with increasing the flux value and has sharp maximum. Similar situation

arises for the minimum also. Thus the behavior of the solid line and the dashed

line is not uniform. In Fig. 6.9 (c), keeping the arm length ratio same we have

taken two different choices of total ring length (L = lU + lL), for incident Fermi

energy E = 45~2

m∗a2
. The ring length for solid line and dashed lines are shown in figure

caption. The solid line goes down with increasing the flux value, but has no sharp

maximum. The dashed line goes down with increasing the flux value, after reaching

minimum it again goes up, but it has sharp maximum and minimum unlike the solid

line. Thus the behavior of the solid and the dashed line is not uniform in all three

Figs. 6.9 (a), (b) and (c). Thus we can conclude that using one propagating mode

and one evanescent mode also we can not build reliable devices based on magnetic

properties.
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Figure 6.9: The figures (a) - (c) show plot of magnetization strength in dimensionless
unit as a function of φ/φ0. The constant potential V0 of the ring is such that
V0 = 10~2/em∗a2. With this choice q1 is real and q2 is imaginary. Thus we are
considering in this case one propagating mode and one evanescent mode. In (a), the
incoming electrons have energy E = 45~2

m∗a2
. The solid line is for lU/a = 1, lL/a = 1

and the dashed line is for lU/a = 1.2, lL/a = 0.8. In (b) the arm length ratio is
taken as lU : lL = 1 : 1. The solid line is for E = 45~2

m∗a2
and the dashed line is for

E = 47~2

m∗a2
. In (c), the incoming electrons have energy E = 45~2

m∗a2
. Keeping the arm

length ratio same (lU : lL = 1 : 1) we have taken here different ring lengths. The
solid line is for L/a = 2 and the dashed line is for L/a = 1.6.
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Taking both the current carrying modes as propagating modes, we have shown in

Fig. 6.8 (a), (b) and (c), that the magnetization behavior is not uniform for different

parameters like different arm lengths, different Fermi energies, different ring lengths,

respectively. Thereafter, taking one current carrying mode as propagating and the

other mode as evanescent, we have shown in Fig. 6.9 (a), (b) and (c) that the

magnetization behavior is not uniform for different parameters like different arm

lengths, different Fermi energies, different ring lengths, respectively. Thus, using

two propagating modes or using one propagating and one evanescent mode we can

not build stable devices based on magnetic properties which supports earlier works

[89] in one-dimension.

In Fig. 6.10 (a), (b) and (c), we have plotted magnetization strength IU .lU+IL.lL

as a function of φ/φ0 for different parameters using two evanescent modes (V0 =

40~2/em∗a2). In Fig. 6.10 (a), we have chosen the energy E = 45~2

m∗a2
and taken three

cases indicated by the solid, dashed and dotted lines where the arm length ratios are

different keeping the total ring length value same. The arm length ratio for these

three cases are described in figure caption. All three cases gives IU .lU + IL.lL value

similar as a function of flux, φ/φ0. In Fig. 6.10 (b), we have taken A-B ring length as

L/a = 0.2. It is not always possible to maintain the Fermi energy (Em∗a2/~2) values

constant due to statistical fluctuation in voltage of the battery or due to temperature

changes. In this figure we have taken three cases where the Fermi energy values for

incoming electrons (described in figure caption) are different. Here we have shown

the value of magnetization strength as a function of flux is independent of incident

energy when we employ evanescent modes. In Fig. 6.10 (c), we have taken the

incidence energy as E = 45~2

m∗a2
and have chosen three different total ring length

values keeping the ratio of arm lengths same. The ring length for solid, dashed and

dotted lines are described in figure caption. Here the nature of these three lines are

the same as that obtained so far. In Fig. 6.10 (a), (b) and (c) we have shown that

the strength of magnetization IU .lU + IL.lL as a function of φ/φ0 is qualitatively

as well as quantitatively same for all variations in parameters like different ratio of

arm lengths (Fig. 6.10 (a)), different Fermi energy (Fig. 6.10 (b)), different total

ring length (Fig. 10 (c)) etc. So there is possibility of robust device action based

on magnetic response using only evanescent modes which contradicts earlier works

that devices based on quantum interference effects cannot be achieved. Note that

the maximum or the minimum in figures (Fig. 6.10 (a), (b) and (c)) is not at 0 flux

as we have argued. However the maxima and minima are fixed and do not change

with change in parameters. The reason for this is explained as for evanescent modes

the two arms behave as classical resistor.

So far we have considered three different cases - (i) keeping Fermi energy value

and ring length fixed, we have chosen three different sets of arm lengths, (ii) keep-

ing arm length and ring length fixed, we have chosen three different sets of Fermi
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Figure 6.10: The figures (a) - (c) show plots of magnetization strength as a function
of φ/φ0 for an Aharonov-Bohm interferometer where all the current carrying modes
are evanescent. Here φ0 = hc/e. In (a), the incoming electrons have energy E =
45~2

m∗a2
. The solid line is for lU/a = 0.1, lL/a = 0.1, the dashed line is for lU/a =

0.12, lL/a = 0.08 and the dotted line is for lU/a = 0.14, lL/a = 0.06. All three plots
show nature of magnetization is independent of relative ratio of arm lengths. In (b),
the arm length ratio is taken as lU : lL = 0.1 : 0.1. The solid line is for E = 45~2

m∗a2
,

the dashed line is for E = 46~2

m∗a2
and the dotted line is for E = 47~2

m∗a2
. All three plots

show nature of magnetization is independent of Fermi energy. In (c), the incoming
electrons have energy E = 45~2

m∗a2
. Keeping the arm length ratio same (lU : lL = 1 : 1)

we have taken here different ring lengths. The solid line is for L/a = 0.2, the dashed
line is for L/a = 0.18 and the dotted line is for L/a = 0.16. All three plots show
nature of magnetization is independent of total ring length.

energies, and (iii) keeping Fermi energy value and arm length fixed, we have chosen

three different sets of ring lengths. Now we will discuss another set of plots where

we have chosen incident Fermi energy and electrostatic potentiali inside the ring in

such a fashion that both the channels are evanescent and sample parameters being

chosen randomly. In Fig. 6.11 (a) and (b), we have plotted magnetization strength

as a function of φ/φ0 for different parameters. In Fig. 6.11 (a), we have chosen the

energy E = 45~2

m∗a2
and taken two different cases indicated by solid and dashed lines.

The ring length and arm length ratio are described in figure caption. The solid line
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and the dashed lines are qualitatively as well as quantitatively same. In Fig. 6.11

(b), we have chosen the energy E = 47~2

m∗a2
and taken two different cases indicated by

solid and dashed lines. The ring length and arm length ratio are described in figure

caption. Here also the solid lines and the dashed lines are qualitatively as well as

quantitatively same.
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Figure 6.11: The figures (a) - (b) show plot of magnetization strength as a function of
φ/φ0 for an Aharonov-Bohm interferometer where all the current carrying modes are
evanescent. Here φ0 = hc/e. In (a), the incoming electrons have energy E = 45~2

m∗a2
.

The solid line is for L/a = 0.24 and the dashed line is for lU/a = 0.11, lL/a = 0.09.
In (b), the incoming electrons have energy E = 47~2

m∗a2
. The solid line is for L/a = 0.22

and the dashed line is for lU/a = 0.13, lL/a = 0.12. Here (a) and (b) shows that
plots are independent of material parameters.

As we have argued before the current in the upper arm (IU) and that in the lower

arm (IL) has an even (in φ) contribution and an odd contribution. Now we analyze

the even current and the odd current separately. The even current is transport

current which is given by

IevenU,L =
IU,L(φ) + IU,L(−φ)

2

and plotted in Fig. 6.12. In Fig. 6.12 (a), we have plotted the transport current
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of the upper arm (IevenU ) as a function of flux and in Fig. 6.12 (b), we have plotted

transport current of the lower arm (IevenL ) as a function of flux. Keeping the total

ring length same we have taken four different choices of arm length ratio and in

all four cases we have shown that the nature of the transport current (in terms of

position of maximum and minimum) in both upper arm and lower arm remains the

same that is independent of arm length ratio. In both these figures peak value, i.e.,

Imax is obtained at φ/φ0 = 6.2. In Fig. 6.12 (a), with the increasing value of the

upper arm length the ImaxU value decreases and in Fig. 6.12 (b), with the decreasing

value of the lower arm length the ImaxL value increases.
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Figure 6.12: The figures (a) - (b) show plots of transport current IevenU/L in dimen-

sionless unit as a function of φ/φ0 for different arm lengths keeping the ring length
same. In (a) and (b), the solid line is for arm length values of lU/a = 0.1, lL/a = 0.1,
the dashed line is for arm length values of lU/a = 0.12, lL/a = 0.08, the dotted line
is for arm length values of lU/a = 0.14, lL/a = 0.06, and the dash-dotted line is for
arm length values of lU/a = 0.16, lL/a = 0.04.

One would have thought that since the evanescent modes decay exponentially

inside the barrier, ImaxU/L would have scaled exponentially with the length. But coun-

terintuitively they scale linearly. The peak value (ImaxU/L ), obtained at φ/φ0 = 6.2, is
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plotted along the arm length in Fig. 6.13. The solid line indicates the peak values

of the upper arm (ImaxU )for different arm length and the dashed line indicates the

peak values for the lower arm (ImaxL ). With increasing the upper arm length, ImaxU

linearly decreases whereas ImaxL linearly increases. This phenomenon has been re-

ported earlier for evanescent modes in one dimension. We find it to occur even in

presence of multiple modes with mixing between the modes. Thus the upper arm

and the lower arm behave as classical Ohmic conductors. This is the reason why

magnetization curves are so uniform and peak magnetization is always at φ/φ0 = 6.2

in Fig. 6.12. However, the sheer quantum behavior can be seen from the fact that

the IU .lU + IL.lL 6= 0. For a classical Ohmic resistor doubling of length would

have halved the current that helps in defining a material specific resistivity. Such a

resistivity cannot be defined for evanescent modes.
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Figure 6.13: The figure shows plot of m∗ImaxU/L /e~ obtained at φ/φ0 = 6.2 (see Fig.

6.12) as a function of upper arm length (lU/a) of the quantum ring. The solid line
indicates m∗ImaxU /e~ as a function of lU/a and the dashed line indicates m∗ImaxL /e~
as a function of lU/a.

The odd current is persistent current which is given by

IoddU,L = IU,L(φ)− IevenU,L
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and plotted as a function of φ/φ0 in Fig. 6.14. In Fig. 6.14 (a) and (b), we use

the same convention and same parameters as in Fig. 6.12 (a) and (b), respectively.

The Fig. 6.14 (a), shows the plot of persistent current as a function of φ/φ0 for the

upper arm and Fig. 6.14 (b) shows the same for the lower arm. The nature of Fig.

6.14 (a) and (b) remains the same when we change the arm length ratio.
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Figure 6.14: The figures (a) - (b) show plot of persistent current in dimensionless
unit as a function of φ/φ0 for different arm lengths keeping the ring length same.
In (a) and (b), we have used the same convention and same parameters as in Fig.
6.12 (a) and (b), respectively.

6.4 Conclusions

Although one-dimensional quantum rings coupled to reservoirs have received a lot of

attention in the past, realistic multi-channel rings were never considered. We have

considered such a quantum ring coupled to two reservoirs. We develop the formalism

to include evanescent modes and channel mixing. A variety of quantum phenomena

arise in such systems like persistent current, circulating current, Aharonov-Bohm



112 Current carried by evanescent modes and possible device applications

effect, conductance current etc. Therefore, we study all these quantum phenomena

for realistic multi-channel rings. We have first calculated the conductance current

taking two evanescent modes along the quantum ring. Here we have found that

conductance current is qualitatively as well as quantitatively same for all variations

of arm length ratio. Next we have calculated the circulating current for two different

cases. First we have taken two propagating modes along the quantum ring and

then we have taken one propagating mode and one evanescent mode along the

quantum ring. We cannot get circulating current using evanescent modes only.

Next we have calculated magnetization of the quantum ring. Magnetization in

quantum ring arise due to two reasons - first is due to transport current and second

is due to Aharonov-Bohm flux. We have calculated strength of magnetization for

three different cases - (i) taking two propagating modes, (ii) taking one propagating

mode and one evanescent mode and (iii) taking two evanescent modes. For the first

two cases we have shown that magnetization behavior is not uniform for different

parameters like ring length, arm length, Fermi energy etc. We have shown that for

evanescent modes the strength of magnetization (IU .lU+IL.lL) as a function of φ/φ0

is qualitatively as well as quantitatively same for all variations in parameters like

different ratio of arm lengths, different Fermi energy, different total ring length etc.

So there is possibility of robust device action based on magnetic response using only

evanescent mode which contradicts earlier claims that devices based on quantum

interference effects cannot be stabilized.



Chapter 7

CONCLUSIONS AND FUTURE

PLAN

“If I can stop one heart from breaking,

I shall not live in vain;

If I can ease one life the aching,

or cool one pain,

or help one fainting robin

onto his nest

I shall not live in vain.”

– Emily Dickinson.

Mesoscopic systems become essential to explore the transition between classical

physics and quantum physics for last several decades. In the mesoscopic regime,

many interesting and sometimes unexpected effects appear due to the phase coher-

ence of the electronic wavefunctions. Some of these effects are very promising for

applications in nano-electronic devices or for quantum standards in metrology.

In this thesis, the main objective was to study the thermodynamic properties

of multiply connected geometries. We have studied transport property of a multi-

channel Aharonov-Bohm ring. We have shown that the transport current can gener-

ate a magnetization which is seemingly a pure thermodynamic property of a system.

Again we have studied quantum capacitance in terms of polarization which is a ther-

modynamic property of a system.

In Chapter 1, we started with the basic details of the mesoscopic systems. We

have discussed the characteristic length scales, and have given the preliminary con-

cept of two dimensional electron gas to fabricate mesoscopic samples. This section
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is followed by some prominent mesoscopic effects.

In Chapter 2, we have given the detailed analysis of transport formalisms used

in mesoscopic systems. We have shown that for an open mesoscopic conductor the

system-environment (conductor-lead) coupling plays a very important role in its

conductance phenomena.We have discussed in detail the Landauer-Büttiker formal-

ism, landmark work by Raulf Landauer and M. Büttiker as this is very useful to

calculate the conductance of a multi-channel Aharonov-Bohm ring in Chapter 5 and

Chapter 6.

Aharonov-Bohm effect plays a very significant role in mesoscopic physics essen-

tially because interference effects play a very crucial role there. The Aharonov-Bohm

effect [12, 13] provides a mechanism for tuning the phase of an electron wave by

means of an electric or magnetic field and controls the switching action of several

proposed quantum interference devices. In Chapter 3 we have given a thorough the-

oretical analysis of Aharonov-Bohm effect in one-dimension for both open system

as well as isolated system as this is indeed very useful to analyze the multi-channel

rings in Chapter 5 and Chapter 6.

In Chapter 4, we have discussed how to define the quantum capacitance micro-

scopically. We have shown that in the semi-classical regime there is a linear relation

between polarization charge and induced potential of a mesoscopic isolated sample

which are related by an effective capacitance Ceff . Effective capacitance can be de-

coupled as a linear combination of classical capacitance and quantum capacitance.

The quantum capacitance is given by the Lindhard function. In this regime, we can

design quantum circuits in terms of this parameter Ceff just as classical circuits are

built in terms of parameters like resistance, capacitance and inductance. We have

also shown that our analysis is independent of model and geometry in any dimension.

In Chapter 5, we have studied conductance, transport property of mesoscopic

system using a two channel (transverse modes) Aharonov-Bohm ring. We have

considered first both the channels to be propagating and we have shown that for

different material parameters such as the total ring length, relative ratio of arm

lengths, Fermi energy etc., the behavior of the conductance as a function of flux

φ/φ0 becomes diverse in nature in different cases. We have shown that similar situ-

ation arises if we take one propagating mode and one evanescent mode. From this

we have concluded that stable devices can be made neither by using two propa-

gating modes nor by using one propagating mode and one evanescent mode. Such

diverse behavior supports Landauer’s claim that switch action based on quantum

interference principle are not stable and practical. Finally we have considered both
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the modes to be evanescent along the Aharonov-Bohm ring. Here we have found

that conductance is qualitatively as well as quantitatively same for all variations in

material parameters like total ring length, relative ratio of arm lengths, Fermi energy

etc. Conductance being a symmetric function of flux is a function of cos(nφ/φ0).

Therefore within a period (0 to 2π) conductance is maximum at zero flux, then it

goes through a deep minimum and rise again to a maximum value. We can assign

the conductance maximum as ‘on’ state and conductance minimum as ‘off’ state of

a switch signifying 1 and 0 operation in Boolean algebra. Thus we can conclude that

if we employ evanescent modes only, we may be able to build stable, efficient and

robust quantum switches. We can obtain appreciable changes in conductance when

using evanescent modes. Different channels add up coherently and so by using larger

and larger number of evanescent channels we can enhance the percentage drop in

conductance and hence efficiency of the switch. In an experimental situation in a

device where one has to employ many switches and can also require that one switch

is ‘on’ while an adjacent switch is ‘off’ can be achieved by intelligently designing

the lengths of the rings so that their areas are different and they capture different

amounts of flux.

In Chapter 6, we have considered a multi-channel Aharonov - Bohm ring con-

nected to two electron reservoirs via perfect leads. A variety of quantum phenomena

can arise in such system, viz., Aharonov-Bohm effect, conductance current, circu-

lating current, persistent current etc. We have studied all these phenomena for our

multi-channel ring. We have developed a correct formalism to calculate the current

in this system using two propagating modes, one propagating mode and one evanes-

cent mode and two evanescent modes. We have studied conductance current using

Landauer’s conductance formula for system having evanescent modes only. Next we

have calculated circulating current for the system having propagating modes only

and having one propagating mode and one evanescent mode. Circulating current

can not arise for those systems having evanescent modes only. Then we have calcu-

lated the magnetization strength. This magnetization can arise due to two different

reasons: firstly due to transport current inside the ring which can be present even

in absence of Aharonov-Bohm flux and secondly due to Aharonov-Bohm flux which

can be present even in absence of transport current. We have studied magnetiza-

tion strength as a function of Fermi energy as well as flux (φ/φ0). In the regime of

circulating current, both the upper arm current and the lower arm current in the

multichannel ring flows either in the clockwise direction or flows in the anti-clockwise

direction leading to a huge enhancement in the magnetization which we have shown.

We have calculated strength of magnetization for three different cases - (i) taking

two propagating modes, (ii) taking one propagating mode and one evanescent mode

and (iii) taking two evanescent modes. We have plotted magnetization strength as
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a function of flux, φ/φ0. For the first two cases we have shown that magnetization

behavior is not uniform for different parameters like ring length, arm length, Fermi

energy etc. We have shown that for evanescent modes the strength of magnetization

(IU .lU + IL.lL) as a function of φ/φ0 is qualitatively as well as quantitatively same

for all variations in parameters like different ratio of arm lengths, different Fermi

energy, different total ring length etc. So there is possibility of robust device action

based on magnetic response using only evanescent mode which contradicts earlier

claims that devices based on quantum interference effects cannot be stabilized.

In future we will study the effect of Coulomb interactions in Aharonov-Bohm

effect. We have shown how to derive quantum capacitance microscopically for a

closed systems. Our next goal is to derive quantum capacitance for open systems

also. We will also study quantum inductance.
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coherent capacitor. Phys. Rev. Lett. 100, 086601, 1-4 (2008).
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